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Parallel viscosity (B -V -II;) as a function of radial electric field E, (or, equiva-
lently, non equilibrium poloidal rotation) in a tokamak is studied using a 5D (3D
in configuration space and 2D in velocity space) Monte Carlo particle following
code. It is shown that including the poloidal density variation changes the quali-
tative behavior of the solution causing the parallel viscosity to change sign when
the Mach number M, = |E, /v, By| is of the order of unity. Here, v, is the thermal
velocity and By is the poloidal magnetic field.
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In the standard neoclassical theory of tokamaks, the neoclassical transport is auto-
matically ambipolar and independent of the radial electric field E,.. As discussed in
Ref.[1], this follows from momentum conservation and is valid only in the absence
of momentum sources. In the presence of forces, such as an externally applied
radial electric field [2] or torque by the orbit losses [3, 4], neoclassical transport
depends on E,., and various expressions for the neoclassical ion flux and parallel
viscosity have been derived [4, 5, 6]. In the context of study of the L-H transition
theory in Refs. [3, 7], it was important to expand the validity of expression for
the parallel viscosity in the region where M, > 1. Here, M, = |E,/v;By| is the
Mach number, By is the poloidal magnetic field, and v, = (2kpT/m)"/? is the
thermal velocity, where m is the ion mass and 7' the zeroth order temperature
(no poloidal variation). First, an expression for (B - V - IT;) was derived assuming
an incompressible plasma flow and constant density in poloidal angle (B is the
magnetic field, II; is the viscosity tensor, and ( ) indicates a flux surface aver-
age). It was found that the viscosity has a maximum at M, ~ 1 and it decays
to zero without changing sign when M, increases. Similar result was obtained
for (B-V -II;/n) in Ref. [8], where the effect of poloidal variation of density n
and compressibility were included. Here, the behavior of (B -V -II;) was not
investigated. Since (B -V -II;) is the standard expression in the literature, and
it appears in a majority of formulations of rotation dynamics and momentum
balance in tokamak theory [2, 3, 9, 10|, the study of (B -V -II;) including the
poloidal density variation is of importance. In this Brief Communication, we
show both by numerical and analytic methods that the standard expression for
the parallel viscosity changes sign when the Mach number increases provided the
variation of density in poloidal angle is taken into account consistently.

The standard expression for the parallel viscosity in terms of pressure anisotropy
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where p; and p, are the parallel and perpendicular components of the pres-
sure, respectively. Different expressions for the pressure components and pressure
anisotropy exist in the literature. The analytic theory presented in Refs. [5, 11]
includes poloidal variation of the electrostatic field, density and temperature, and
is based on full velocity integrals. To simplify the problem, we here neglect the ra-
dial density and temperature gradients and, also, the poloidal electric field. Thus,
we can write the density as n = ng + n1(0), where 6 is the poloidal angle. With
these simplifications and using the expressions for pj and p; given in Eqgs.(9) and

(10) of Ref. [11], the pressure anisotropy can be written as
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where the poloidal dependence of the density is
n1(0) = —eng[1 — (1 + 22%)A] exp (i6), (3)

r is the radius, Ry is the major radius, By is the magnetic field at the axis,
€ = r/ Ry, and ng is the zeroth-order density. The functions I and A are defined
as
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where 2z = x + iy, © = M,, and y = v,;¢%/2. Here, the normalized collisionality is

Vi = VRoq/v,e3/? with the ion-ion collision frequency v and the safety factor g.



An alternative expression for the pressure anisotropy is given in Refs. [6, 12]:
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where ug = (uyBp — E,)/ By is the poloidal flow velocity. Neglecting the toroidal
flow velocity ug, the integral I, is [12]
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where ¢ = vy /v is the velocity pitch, and x = yvr/ vw'/?. Here, vy is the collision
frequency for anisotropy relaxation. Using the expression for vy given in [10],
the results in the Pfirsch-Schliiter regime obtained with a more complete collision
operator have been reproduced to within 20 % [6]. In Refs.[3, 7], the second
term in the brackets on the right hand side of Eq.(4) was neglected since it was
not considered important. However, here we show that taking into account the
poloidal density dependence clearly changes the qualitative behavior of the parallel
viscocity.

In the numerical simulation, the 5D (3D in configuration space and 2D in velocity
space) Monte Carlo particle following code ASCOT [13] is used. The guiding-
centre orbits of the ions are followed in a tokamak geometry, and a binary collision
model [14] is used to model ion-ion collisions. In this model, simulation region
is divided into cells (in r and @) small enough that the plasma parameters are
approximately constant inside the cell. In each cell, particles are paired randomly
and they are left to collide pairwise. These small angle collisions are performed
in the whole test particle ensemble after each time step during which all particles
are advanced along their guiding-centre orbits. During this time step the particles
typically move only a small fraction (o< 1/100) of their whole orbit. The guiding-
centre equations in the ASCOT code are written in straight magnetic field line
coordinates [15] using canonical Hamiltonian variables to avoid numerical drifts.
The magnetic background is assumed stationary. In the Runge-Kutta integration
of the the orbit, total energy, magnetic moment and toroidal momentum remain
constant, but they are changed in collisions for each individual particle. How-
ever, for a group of particles in each cell, the chosen collision operator conserves
the number of particles, the total momentum, and the total energy. Test par-
ticles are initially distributed uniformly in configuration space and pitch angle,
and distribution in velocity is Maxwellian. Each test particle is weighted with
a number that corresponds to the relative volume of its initial location in phase
space. The parallel viscosity from Eq.(1) is calculated directly from the code in
terms of the statistically measured pressure components p| = [m(v — ) fd*v
and p, = [(m|vi —uy]*/2)fd*v. Here, v and v, are the parallel and perpendic-
ular velocity components, respectively, and v and u are the corresponding flow
velocities. All the flow velocity components, as well as p; and p,, are calculated
from the code on a grid of 6 and r as time and ensemble averages of particle
velocities. Using the momentum conserving collision operator with a fixed ra-
dial electric field and excluding other forces generates a particle flow parallel to
the magnetic field to compensate the poloidal rotation. This mean flow velocity,
Up = [u(0)(R/Ry)fdf, is driven by viscous processes and its build up occurs
on a collisional timescale. Thus, in order to compare the results to analytic es-
timates obtained for U ~ 0, the measurement is here done before a significant
mean parallel velocity has developed. The present assumption of a fixed E, may
correspond to situations in which F, is externally applied by probe, or in which
some other source of momentum such as Reynold’s stress, ion orbit loss current or
current due to magnetic ripple is present and sustains the rotation in equilibrium.



In the absence of momentum sources, E, would evolve to a value in which the
parallel viscosity vanishes on a time scale which is faster than the collisional time
scale.

Parameters similar to those of ASDEX Upgrade [16], ¢ = 0.5 m, [, = 1 MA
and By = —2.5 T, are used for the minor radius, plasma current, and magnetic
field on the axis, respectively. Since the analytic results were derived in the large
aspect ratio limit of a quasitoroidal configuration, a larger value (Ry = 3 m) for
the major radius and co-centric circular magnetic surfaces on a poloidal cross-
section are chosen. In this geometry, magnetic field is of the form B = By(es +
O(r)eg)/(1+ecosh). In Fig. 1, the parallel viscosity calculated from Eq. (1) using
the pressure anisotropy obtained from the simulations is compared to the viscosity
obtained with the analytic pressure anisotropies of expressions (2) and (4). To
show the influence of the poloidal density dependence, Eq. (4) is used both without
a poloidal density gradient and with the density dependence of Eq. (3). Here,
the densities and temperatures are chosen to correspond to the collisionalities
of v,; = 46, 12 and 2.5, respectively, the first one being in the Pfirsch-Schliiter
regime and the other two in the plateau regime. Both in the Pfirsch-Schliiter
regime and in the plateau regime, the parallel viscosity (B -V - II;) changes sign
when M, approaches unity. This takes place both in the numerical simulation
and for the analytic result with the poloidal density dependence. Only when the
poloidal density variation is neglected, one obtains a positive definite result. For a
small poloidal rotation, the density perturbation is insignificant and the standard
neoclassical result is found with all methods. The effect of poloidal electric field
has also been tested. With the analytic expressions of Refs. [5, 11] its contribution
to the viscosity is of the same order as that of the other terms but it does not
change results qualitatively. This was also checked by running the ASCOT code
by solving the poloidal electric field from the assumption of quasi-neutrality and
Boltzmann distribution of the electrons on a magnetic surface. Again, the results
were not changed qualitatively.

It is interesting to take a closer look at the density variation. A further inves-
tigation of the real part of Eq. (3) shows that for small values of M, the sin6
term dominates the poloidal density dependence. At M, ~ 1, both sin @ and cos
terms are important, and for large M, the sin# contribution vanishes leading to

n =mng+ ni(0) Mozgeo no(1 — 2ecosb), (6)

i.e., the density is peaked on the high field side. Indeed, this same dependence can
be found also in Ref. [12], but there the expression (B - V - I1;/n) was used instead
of (B-V -II) for the viscosity, and only the latter one changes sign because of
the density variation when M), increases. Now, if one assumes the magnetic field
of the form

B ~ By(1 — ecosb),

and uses the density dependence of Eq. (6) in Eq. (4), one sees that the sin6
dependent part inside the parantheses clearly changes sign due to the inclusion of
poloidal density variation. When introducing the pressure anisotropy of Eq. (4)
into Eq. (1), only the sin @ part becomes relevant for the sign and the value of
parallel viscosity, since the cosf part vanishes in the integration. In Fig. 2, the
poloidal density variation from the code and from Eq. (3) are compared. Good
qualitative agreement between the analytic and numerical result is found both for
small and large values of M,,.

In the present numerical and analytic study of parallel viscosity, it was found that
the parallel viscosity changes sign when the Mach number is of the order of unity.
Although one obtains qualitatively the same results from the analytic calculation
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and the numerical simulation, quantitative differences exist due to simplified col-
lision operators used in the analytic formulas. However, there is evidence from
the present ASCOT simulations that the effect of convection term, defined as
(nB-u-Vu;), is of importance for large Mach numbers and that the effective
viscosity, which is, the sum of convection term and standard parallel viscosity,
has a maximum at M, ~ 1. For this sum, no change in sign is observed when
M, increases. Furthermore, one should remember that the qualitative behavior of
viscosity term of Ref. [8], defined as (B - V - II,/n), is different from the behavior
of the standard parallel viscosity (B -V - II;) for large Mach numbers.
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Figure 1: Parallel viscosity as a function of the radial electmc field for temperatures
a) 100 eV and b) 200 eV, with the density n = 5 x 10" m_3, and c¢) for low the
collisionality case with T = 300 eV and n = 2 x 10 m™3 calculated with ASCOT
and from analytic formulas. Parallel viscosity changes sign at M, ~ 0.5 —1 in all
cases where the poloidal density dependence is taken into account.
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Figure 2: Density variation for T = 200 eV and ng = 5 x 10 m™3 from the
numerical simulation and from Eq. (3) for E, = 10 kV/m (M, = 0.36) and for

E, =80 kV/m (M, = 2.9). For large M,, the density is largest at the inboard
equator.





