In: Avouris, N. and Fakotakis, N. (Eds.) Advances in Human-Computer Interaction | (Proceedings of the Panhellenic Conference
with International Participation in Human-Computer Interaction PC-HCI 2001), Typorama Publications, pp. 45-50.

Bridging the Gap between User Needs
and User Requirements

Sari Kujala, Marjo Kauppinen

Helsinki University of Technology
Software Business and Engineering Institute
P.O.B. 9600 FIN-02015 HUT, FINLAND
sari.kujala@hut.fi, hutmhk@cs.hut.fi

SUMMARY

Developing a usable product involves more than
considering the user interface. The product should also
fit into a context of use and meet user requirements. It
remains a challenge to represent use contexts and user
needs in a way that designers with technical backgrounds
are able to make direct use of them. This paper proposes
an approach to representing user needs and translating
them into user requirements in industrial product
development cases.

KEYWORDS : user needs, user study, user requirements,
use cases, user centred design, requirements engineering

INTRODUCTION

John Karat [13] describes in his article how the notions
of system usability have been expanded. Now, the
acceptability of any software product is not seen
anymore as being dependent solely on user interface
features, but on the way a system fits into its context of
use. Furthermore, we have to understand the needs of the
users as a way of informing the design process. The
human-computer interaction community has generally
adopted the term 'user-centred design' for this broader
view of developing systems.

In order to develop useful and usable systems we have to
understand user needs and contexts, represent them in
user requirements and maintain a focus on user
requirements throughout the development [6]. In a way,
the challenge is how to bridge the gap between the
technical world of the designers and the professional
world of the users [16]. Rumbaugh [21] suggests that for
designers the requirements must be expressed in some
structured way, but for users the requirements must still
be understandable, as they must verify them. The
question remains: How can we describe requirements for
each of these groups? In addition, as Imaz and Benyon
[9] and many others have suggested, the question is how
we can move confidently and consistently between
informal descriptions of user data and more formal
design representations.

We consider user needs to be the first and usually most
informal data to be used in requirements definition. Imaz
and Benyon [9] refer to "user stories”. By user, we mean
the individual interacting with the future product [10]. In

Sanna Rekola

KONE Corporation
P.Q. Box 677
FIN-05801 Hyvinkaa, FINLAND

product development, the user is also a customer or the
customer is sometimes a different person. By customer
we mean the individual who pays for the product. Both
groups are important stakeholders in product
development, but as Coble et al. [6] point out, the
customer's primary goal is usually to provide a system,
which supports users in their tasks.

User needs refer both to the difference between users'
goals and the present condition, which is manifested by
user problems and possibilities, and the context of use,
which includes the characteristics of the intended users,
users' present tasks and environment. This context of use
needs to be considered and respected.

Requirements are the more formal descriptions. We have
divided the requirements into user requirements and
technical requirements [20]). User requirements are
written from the user point of view. User requirements
describe any function, constraint, or other property that
must be provided to satisfy the user needs [1]. Therefore
user requirements describe how a future product can hel
users achieve their goals effectively, efficiently, and witl.
satisfaction in their context of use (cf. the definition of
usability in ISO 13407 [10]). Technical requirements
describe how the product will be implemented to meet
user requirements.

The experience we will draw on here comes from our
work with the four industrial pariners as a part of the
QURE project. The QURE project (Quality throup™
Requirements) is a three-year research project at tl
Helsinki University of Technology. The aim of tl
project is both to help three industrial partners in Finlan.
to improve their requirements engineering practices and
to do research work on HCl and requirements
engineering. The industrial partners are product
development units of medium-size or large companies.
The participating companies were the KONE
Corporation, Tekla, and Vaisala. Their products are
embedded and/or interactive systems, and they are either
new versions of older products, or totally new products.
The first two authors are researchers of the Qure project
with psychology and software engineering backgrounds.
The third author is a usability specialist with the KONE
Corporation,



voigt
In: Avouris, N. and Fakotakis, N. (Eds.) Advances in Human-Computer Interaction I (Proceedings of the Panhellenic Conference with International Participation in Human-Computer Interaction PC-HCI 2001), Typorama Publications, pp. 45-50.


In the early phases of the project we explored by
interviewing the state of user and customer practices
more detailed in two of the companies. Three designers
representing different projects were selected from each
of the companies. We found out that the projects were
technology driven. The companies have a long
experience of developing products and the practitioners
seemed to rely on this earlier experience, using indirect
links to users and customers. Four out of six projects had
no direct contact with users or contact was not until the
late prototype phase. This means that in some projects
the user and customer requirements were not actually
gathered or documented. Gathering user information was
sometimes passive, methods were informal, and the
gathered information was not documented at all.

As a response to the interview results, the companies
wanted to develop more user centred requirements
processes, as direct contact with users and customers was
seen as a success factor in projects. User-centred field
studies were piloted to gather user needs. After user
needs and requirements were gathered successfully, we
faced the challenge of how to introduce the results into
projects and maintain the focus on user needs. This paper
describes a set of tasks we developed, and our
experiences using it in companies.

Difficulty ot Representing User Requirements

The user requirements documents we saw in the
companies of the study described technical details and
their implementation, This was the easiest way of
describing user requirements for technical designers.
Thus, the fundamental problem was how to introduce the
user point of view and user needs for designers, and help
designers  transform them into relevant user
requirements.

First, user requirements should be understandable for
users to enable them to give feedback. As both Kyng
[16] and Nielsen [19] state, it is not possible to gather
user feedback by showing them traditional
representations such as requirements specifications. They
believe in prototypes and mock-ups, which are more
concrete and ready for hands-on explorations. However,
the focus of prototypes is in interface issues, which
present difficulties to the users. For example, Beyer and
Holzblatt [3] describe how users have to understand from
the interface what the product does, and how it is
structured, and at the same time evaluate whether the
system supports their work practices. For that reason,
most users tend to complain about interface details, but
not the basic structure or functionality of the system.

Beyer and Holzblatt [3] and Kyng [16] consider that the
crucial aspect of prototyping is cooperation between
users and designers in a process that allows users to live
out their own work in the new system and articulate the
issues they identify. In practice, we have found that this
is not so easy. Users and usability experts face an
impossible task in trying to get an overview of the
system functionality from a collection of paper

46

prototypes. In addition, we found that designers had
difficulties in remembering and conveying user
requirements in prototypes. We need something more
than prototypes to define the necessary functionality and
communicate it to users and other stakeholders.

Use Case Driven Approach

The use case driven approach is a popular solution,
which software engineering is providing to help with the
problem of gathering and representing user requirements.
Jacobson [11, 12] introduced use cases as a part of
object-oriented methodology. A use case describes the
possible sequences of interactions between the system
and one or more actors in response to some initial
stimulus by one of the actors [2]1]. Jacobson [11]
employs a graphical use case model, which includes the
system as bounded by a box, each actor represented by a
person outside the box, and use cases represented as
ellipses inside the box. Rumbaugh [21] complemented
the model by proposing a written description of use case
including name, summary, actors, preconditions,
description, exceptions, and post conditions.

Ever since, Jacobson [11] introduced use cases, they
have been considered to be a good way of capturing the
users' needs and requirements [21, 17] and of modelling
functional requirements [5]. Consequently, use cases are
very interesting from the HClI-point of view. They are
also widely accepted among designers, providing an
opportunity to transmit the user point of view to
requirements engineering, and resembling 'scenarios of
use', the popular technique in HCI [4].

Jacobson's [11] original idea was that by use cases the
whole system development starts from what the users
wish to be able to do with the system. In this way, the
system is built from the users' point of view. However, in
practice it is different. In our experience, use cases are
written without any knowledge of user needs and the
documents are not read by users as Jacobson
recommended. Therefore, use cases are written from a
technical or interface point of view, but not from the user
point of view (see also [18]). The resulting use cases are
nearly impossible to understand by users. Either does the
use case literature support the idea that user needs should
be elicited from users {17].

In this paper, we defined a representation way by which
user needs and the user point of view could be
implemented in a software engineering process using use
cases.

CASE STUDIES

Our first step in this project was to develop new user
requirements elicitation methods for our industrial
partners. The idea was to help designers gather user and
customer needs by direct contact, and use this user point
of view in developing usable products. In two of the
companies, we worked with product development
projects, and with one of the companies, we first worked
with a process improvement group, which was focused



on user requirements gathering, and then with a product
development project. Table | presents the tasks, which
were completed in the case companies.

Vaisala | KONE | Tekla
* new * new s new
version | version | product
Identifying X X X
stakeholders
Gathering user needs X X X
Describing user needs X X
for use cases
Documenting use X X
cases
Gathering user X
feedback

Table 1: Tasks completed in the three case companies,

Stakeholder identification was seen necessary in order to
consider all stakeholders and find representative users,
from whom to gather user needs. User needs were
gathered by user-centred field studies or user studies
using interviewing and observation [3, 8, 15, 22]. In
Tekla, user need descriptions were not used in
developing use cases, as the user needs gathering, and
documenting use cases, were done in parallel. Next, we
will focus on how the identified user needs were
described and transformed to use cases.

Describing user needs for use cases

First, in Kone the results of the user studies were
reported in written documents. Also photographs and
video recordings were used to represent user needs.
Designers found the reports, photographs and videos
useful, but the user study teams found the analysis and
reporting of user needs the most challenging part of the
process. In two of the user studies 46% of the total time
(112 hours) and 43% of the total time (277 hours) were
spent in respectively analysing and reporting the results.

In another company, we found that it was not so easy for
a technically oriented designer to use user needs in
product development. The designer was able to write
user study reports as he was advised, but he couldn't see
how to use the documents in user requirements
definition.

We found that a slightly more formal way of
representing user needs was needed, so designers could
use the information in analysing and rationally selecting
a good combination of user needs for inclusion into the
future system, and transfer the descriptions to use cases.

47

We thereby represented users' current task sequences in a
box-diagram, Figure 1 describes a simplified example of
the diagram for handling an elevator emergency call in
Kone. The aim of this case was to develop a new and
better system, which could offer both voice and data
connections from an elevator to its related call centre.

1. When entrapped in an elevator passen-
ger makes an emergency alarm call.

y

2. Unoccupied service centre operator
receives the emergency alarm call and
asks for information.

v

3. Service centre operator completes
transmission of information to the system
and sends it to the serviceman.

v

4, Service centre operator calls the
serviceman and reads him the description
of the failure.

Figure 1: Users' task sequence diagram on elevator emergency
call handling process.

Our hypothesis was that the task sequence is an initial
description of user tasks which should be redesigned and
translated into use case descriptions, Written in the users’
own language, and from the users' point of view, the task
sequences would convey the user point of view to use
cases and requirements, Then we linked the task
sequence steps to users' problems and possibilities
which we had identified in the user studies (Table 2)
Our hypothesis was that it is easier to use user needs data
in design when the findings are connected to the task
sequence, that forms the basis for use case descriptions.

We have initial evidence that these user need tables were
useful for designers. The technically oriented designer
got insight from one example table created for him, He
got enthusiastic and wanted to make these kinds of tables
from all of his findings. His project manager assessed
that he could describe 70% of the requirements in this
way. Also in another project, a designer who had not
participated in user needs gathering found the user need
tables useful.

We found in the third company that writing use cases
without user needs tables was difficult. In a pilot project
the use cases were written before user studies and thus
user needs tables were not available to provide user
points of view in users' language. The designer did not
know all the details of the user tasks to be completed or
the natural order of the tasks, and describing the use
cases by users' language was difficult. We had to spend
time reminding designers about the user point of view.




Task sequence:

Problems and possibilities:

Step 1: When trapped in an elevator,
passenger makes an emergency alarm.

» Passengers want to get out of the elevator as soon as possible

+ All kinds of passengers must be able to make an alarm call (blind,
foreigners etc.)

» Sometimes passengers may make false alarms unintentionally.

» Passengers may be in panic.

» Passengers need instant confirmation that they have created a
connection to the service centre operator and that they are going to
get help.

Step 2: Unoccupied service centre
operator receives the emergency alarm
call and asks for information.

» Different versions and types of remote monitoring systems.
» Passenger is the only information source.
« Service centre operator does not notice the emergency alarm call.

Step 3: Service centre operator
completes transmission of information
to the system and sends it to the area

« Laborious phase for the service centre operator.
* Simultaneous calls must be differentiated.
* Serviceman cannot see all information.

serviceman.

+ Inadequate information from a site system.

* Possibility: Instructions as to how to operate the system.

* Possibility: Possibility to open phone line from Call Centre to the
elevator,

Step 4: Service centre operator calls the
serviceman and reads the description of

the failure.

+ Extra work for the service centre operator.

Table 2: User need table.

USE CASE: Making An Emergency Alarm Call

Summary: An entrapped passenger pushes the emergency alarm button in order to get help. A service
centre operator receives the emergency alarm call and informs the passenger that a
serviceman will come and let the passenger out of the elevator.

Actors: Passenger and service centre operator

Preconditions: | An elevator has stopped between floors and there is a passenger in the elevator. The goal of

the passenger is to get out of the elevator safely and as quickly as possible.

Basic sequence:

Step 1: The passenger presses the emergency alarm button.

Step 2: The service centre operator gets a visible notification about the emergency alarm call
on the screen with an optional audio signal.

Step 3: The service centre operator accepts the emergency alarm call.

Step 4: The system opens a voice connection between the service centre operator and the
passenger.

Step 5: The system indicates to both the passenger and the service centre operator that the
voice connection is open.

Step 6: The system guides the service centre operator as to what information to ask of the
passernger.

Step 7: The service centre operator informs the system that the emergency alarm call is
correct,

Exceptions: Step 1: If an entrapped passenger does not push the alarm button long enough (less than 3
seconds), the system alerts the passenger with a voice announcement.
Step 7: If the passenger has pressed the emergency alarm button by accident, the service
centre operator informs the system that the emergency alarm call is false. The system resets
the emergency alarm call,

Post The entrapped passenger knows that the service centre operator will contact a serviceman

conditions: who will help the passenger out of the elevator safely as soon as possible.

Table 3: A use case for handling an elevator emergency call.

48




Documenting use cases

In Kone, we have proceeded so far as use cases were
written using user need tables and list-based
requirements documents. Table 3 presents a simplified
use case from the same case as in the user need table
(Table 2). We used Rumbaugh's [21] way of describing
use cases, except that we organised the written
description of the use case in steps with numbers and
connected the exceptions to steps identified by numbers.
We also described the goal of the user in Precondition-
part: what users are trying to accomplish and why (cf.

[7D.

A total of seven use cases was developed for the system.
About three days were spent in documenting this
particular use case. Actually, it included 14 steps and 13
exceptions. Designers found the use case descriptions
useful. Use cases helped designers to gain a higher-level
view of product requirements and identifying missing
undefined details. As this company had a long
experience of developing these systems, a lot of
information was undocumented up to the present.

Gathering user feedback

In Tekla, the user studies were conducted parallel to
documenting use cases, and drawing user interface
pictures, although, due to the shortage of time, the use
cases were not based on these user studies. It was
nevertheless possible to gather feedback from users with
paper prototypes and use cases at the time when user
needs were gathered. First, the feedback was gathered
only with paper prototypes. We found that although
important feedback was gathered about the usability of
prototypes and interface details, the users nevertheless
wanted more information about the functionality of the
system. Also the usability expert had difficulties in
understanding the whole functionality from few paper

prototypes,

When use cases were shown to a user before the
prototypes, it was easier to communicate the
functionality to the user. The entirety of functionality
was clearly described by Jacobson's [11] use case
diagram, but we formed the opinion that the idea of the
product should have been described shortly before
presenting the diagram, as the user's first interpretation
of the product was based on his current way of
conducting the same tasks. Anyway, we got useful
feedback from use case descriptions, as the user
commented on the order of the steps, and pointed out
details missing from the functionality. However, the user
misinterpreted one aspect of the use case descriptions
because he assumed that the system would support his
current way of working. He thought that while he was
operating with the system, he could immediately see the
changes made in a figure on the screen. According to the
use case description, a user has to first make all the
changes and only at the end of the task he see the
changes in a figure. The user interpreted the functioning
of the paper prototypes as well on the basis of his current
way of performing the tasks and this resulted in usability

49

problems. Qur view is that utilising the users' present
processes would have made the product both more
intuitive for them, and more usable.

CONCLUSIONS

As Armour [2] argued the hard part of building systems
is not building them, but knowing what to build—it is in
acquiring the necessary knowledge and identifying the
areas of ignorance. In our experience, many designers
think they know everything necessary about users and
their needs, whereas actually they don't know, but they
don't know that they don't know, Therefore, we have
presented a representation way, by which user needs and
the user point of view can be stated explicitly in
requirements definition, and by which the gap between
user needs and user requirements can be decreased. The
following lessons have been learned:

s  User need tables are a useful way to represent
user needs to make them understandable and
useful for designers. In user need tables we linked
users’ problems and possibilities to their task
sequences. We found in two companies that this way
of representing user needs is useful. The designers
do not merely receive information about what users
need, but they also see how to utilise the users’
present processes, how the present processes should
be redesigned and the context of use considered. As
the users’ problems and possibilities are linked to
task sequences, the problems are not too vague and
can be analysed systematically.

s User need tables help the designers translate user
needs to user requirements and write use cases
from the user point of view. User need tables
provided an overview of user tasks and task
sequences, users' needs and language. When the user
need tables were missing, we had to spend time
reminding designers about the user point of view.
Furthermore, the use case descriptions missed th
necessary level of details.

e Use cases help designers to gain a coherent viey
of the product. In this way, undefined missin
details were identified and definition work did no
proceed too quickly to technmical details. The
designers said that they could use the use cases as
checklists to guide the definition work and writing
instructions. They also noticed that use cases could
be used as test cases.

e User needs gathering is a necessary siep to
develop a usable product. We need real data on
users and their needs, gathering user feedback with
use cases is not sufficient. Users are still interpreting
use cases on the basis of their present way of
performing the tasks, and these implicit assumptions
risk the mutual understanding between users and
designers. However, the user need-gathering seems
to require special training.




All in all, when we consider product development, we do
not have any specific customer to work with or who
would deliver user requirements. We believe that user
and customer data have to be actively elicited from users
and customers by direct contacts [14] and described in a
way that designers can easily utilise. Connecting user
need tables and use cases are an initial step towards
building a process from user needs to user requirements.

BIBLIOGRAPHY

1,

Abbott, R. J. An Integrated Approach to Software
Development. Wiley, New York, 1986. ’

Armmour, P. G, The five orders of ignorance.
Communications of the ACM, 43, 10, 2000, 17-20.

Beyer, H. and Holtzblatt, K. Contextual Design:
Defining Customer-Centered Systems. Morgan
Kaufmann Publishers, California, 1998.

Carroll, J. M. (ed) Scenario-Based Design:
Envisioning Work and Technology in System
Development. John Wiley & Sons, New York, 1995.

Chandrasekaran, P. How use case modeling policies
have affected the success of various projects. In
Addendum to the 1997 ACM SIGPLAN Conference
on  object-oriented  programming,  systems,
langauages, and applications. pp. 6-9.

Coble, J. M., Karat, J. & Kahn, M, G. Maintaining a
focus on user requirements throughout the
development of clinical workstation software. In
proceedings of the CHI'97, pp. 170-177.

Constantine L. L. Essential modeling, use cases for
user interfaces. Interactions, 2, 2, 1995, pp. 35-46.

Hackos, J. T. and Redish, J. C. User and Task
Analysis for Interface Design. Wiley, New York,
1998.

Imaz, M. & Benyon, D. How stories capture
interactions. In A. Sasse & C. Johnson (eds.),
Human-Computer Interaction—INTERACT '99:
Proceedings of the Seventh IFIP Conference on
Human-Computer Interaction, Vol. 1, IOS Press, pp.
321-328.

50

10.

11,

12

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

ISO 13407. Human-centred design processes for
interactive systems, ISO/TC159/SC4. International
Standard, 1999.

Jacobson, 1. Object-Oriented Software Engineering,
Addison-Wesley, Readin, MA, 1992,

Jacobson, 1. The use-case construct in object-
oriented software engineering. In Carroll, J. M.
(ed.), Scenario-Based Design, Envisioning Work
and Technology in System Development. John
Wiley & Sons, New York, 1993, pp. 309-336.

Karat, J. Evolving the scope of user-centered design.
Communications of the ACM, 40, 7, 1997, 33-38.

Keil, M. & Carmel, E. Customer-developer links in
software development. Communications of the
ACM, 38, 5, 1995, 33-44,

Kujala, S. & Mintyld, M. How effective are user
studies? In McDonald, S., Waem, Y., & Cockton, G.
(eds.), People and Computers XIV (Proceedings of
HCI'2000), Springer-Verlag, pp. 61-71.

Kyng, M. Making representations work.
Communications of the ACM, 38, 9, 1995, 46-55.

Lee, J. & Xue, N.-L. Analyzing user requirements
by use cases: A goal-driven approach, IEEE
Software, 16, 4, 1999, 92-101.

Lilly, S. Use case pitfalls: Top 10 Problems from
real projects using use cases. Proceedings of
Technology of Object-Oriented Languages and
Systems, TOOLS 30, 1999, pp. 174-183.

Nielsen, J. Usability Engineering. Academic Press,
London, 1993.

Rombach, H. D. Software Specification: A
Framework. SEI Curriculum Module SEI-CM-11-
1.2, Software Engineering Institute, Carnegie
Mellon University, January, 1990.

Rumbaugh, J. Getting started - Using use cases to
capture requirements. Journal of Object Oriented
Programming, September 1994, 8-23.

Wood, L. E. Semi-structured interviewing for user-
centered design. Interactions, IV.2, 1997, 48-61.





