
Speeding up On-line Recognition of Handwritten Characters
by Pruning the Prototype Set

Vuokko Vuori, Jorma Laaksonen, and Erkki Oja
Helsinki University of Technology

Laboratory of Computer and Information Science
P.O Box 5400, FIN-02015 HUT, Finland

{vuokko.vuori,jorma.laaksonen,erkki.oja}@hut.fi

Jari Kangas
Nokia Research Center

P.O. Box 100
FIN-33721 Tampere, Finland

jari.a.kangas@nokia.com

Abstract

This work describes a prototype-based online handwrit-
ten character recognition system and a two-phase recogni-
tion scheme aimed to speed up the recognition. In the first
phase, the prototype set is pruned and ordered on the basis
of preclassification performed with heavily down-sampled
characters and prototypes. In the second phase, the final
classification is performed without down-sampling by using
the reduced set of prototypes. Two down-sampling methods,
a linear and nonlinear one, have been analyzed to see their
properties regarding the recognition time and accuracy.

1. Introduction

On-line handwriting recognition has become an impor-
tant alternative for textual input since palm-sized comput-
ers and advanced mobile phones, in which a keyboard can-
not conveniently be integrated, have become more common.
Among the key factors determining the usability and accept-
ability of a handwriting recognition system are recognition
accuracy and speed.

The recognition should be faster than writing so that the
user does not need to wait for the results and go back sev-
eral characters in order to correct recognition mistakes. Hu-
mans are able to write from 12 (block printing) to 33 (fast
cursive writing) words per minute. Assuming that the aver-
age number of characters in a word is five, recognition time
for a single character should be approximately 300 ms or
less [7]. Also, the recognition accuracy should be high. An
acceptable recognition error rate depends on the nature of
the task. For example, for writing down personal notes and
information meant for another person it is 97% and 99%,
respectively [1, 3, 6].

The recognition accuracy can be improved during the
normal use of a device by adaptation. For example, a

prototype-based system can very easily and quickly be
adapted to new writing styles just by adding new character
samples to the prototype set or modifying and inactivating
existing prototypes [10, 11]. In on-line recognition systems,
user adaptation must be concerned too. It is essential that
the users comprehend how the recognition system is work-
ing in principle. Only then the users can have some insight
into the recognition errors and are able to adapt their writ-
ing styles so that the recognition performance of the system
improves. In addition, well-understood recognition errors
might be less irritating than those which seem more or less
random. In this respect, a prototype-based recognizer with
an intuitive matching method is convenient for on-line ap-
plications [12].

A drawback of the prototype-based classifier is that the
recognition time depends on the size of the prototype set.
The initial prototype set should cover at least the most com-
mon writing styles. Adaptation has to be planned so that
in the end there will not be many similar prototypes of the
same class and all the prototypes will be useful. Recog-
nition time increases when new prototypes are added into
the prototype set due to adaptation. On the other hand,
it can be decreased by inactivating prototypes which have
never been used. Recognition time can be decreased also
by clever ordering and pruning of the prototypes prior the
final matching. In this work, this approach has been taken.
In the experiments, we study how much computation time
can be saved by ordering and pruning the prototype set on
the basis of preclassification performed with down-sampled
characters and prototypes.

The rest of this paper is organized as follows. Section 2
describes the prototype-based recognition system. The de-
cision rule, dissimilarity measure, forming of prototype set
and speedup methods are explained too. Section 3 intro-
duces the character database used in the experiments and
the normalization and preprocessing methods of the charac-
ter samples. The experiments are explained and their results

tsonkkil
Copyright 2001 IEEE. Reprinted, with permission, from Proceedings of 6th International Conference on Document Analysis and Recognition, pp. 501-505.

are given in Section 4. The concluding remarks are drawn
in Section 5.

2. Prototype-based classifier

In our recognition system, classification is carried out
by evaluating the dissimilarity measures between the nor-
malized and preprocessed input character and all the pro-
totypes and then applying the nearest neighbor rule [2].
This simple rule has nice asymptotic properties, recogni-
tion error rate approaches twice the Bayesian error rate as
the number of prototypes becomes large and it has yielded
good results in various pattern recognition applications. Its
major drawback is that it is computationally heavy, espe-
cially with large prototype sets and complicated dissimilar-
ity measures.

2.1. DTW-based dissimilarity measure

Characters are compared with each other by using the
same dissimilarity measure based on the Dynamic Time
Warping (DTW) algorithm [8] during both prototype selec-
tion and classification. Characters are represented as se-
quences of data points, see Figure 1. The DTW-algorithm
matches two characters so that the sum of the squared Eu-
clidean distances between the matched data points is min-
imized. This can be seen as an elastic matching of the
curves: the dissimilarity measure tells how much bending,
stretching, and shrinking is required in order to make the
two curves similar.

The matching is constrained by boundary and continu-
ity conditions. Boundary conditions ensure that the first
and last data points of the two curves are matched against
each other. The continuity condition requires that all the
data points are matched at least once and in the same order
in which they have been produced. Connected parts of the
drawn curve where the pressure between the pen and writ-
ing surface exceeds a given value are considered as strokes.
The characters are compared stroke wise – the dissimilarity
between two characters is the sum of the dissimilarities be-
tween the stroke pairs. Dissimilarity between characters of
different numbers of strokes is set to infinity. The dissimi-
larity measure is described in more detail in [9].

2.2. Forming of the prototype set

A simple clustering algorithm was used for forming
a tree-like clustering for each character class and stroke-
number variation. In the beginning of the algorithm, there
were as many clusters as there were character samples.
Next, the two clusters whose middle items were the most
similar were merged and the middle item of the new clus-
ter was searched for. Then again, two clusters were merged

into one in a similar manner. The algorithm continued until
there was only one cluster left. The benefit of this algo-
rithm is that it does not require any prior information on the
number of writing styles. It also has a tendency to keep mal-
formed, rare or even erroneous samples in their own clus-
ters.

All the cluster trees were examined and the prototypes
for the next phase were manually selected. Some of the very
rare styles (i.e. only one or two samples from one writer)
were omitted. All the selected prototypes differed from
each other by their shape or by the drawing order or direc-
tion of the strokes. Next, the selected prototypes were fine-
tuned with a modified LVQ-algorithm using the rest of the
characters as training samples [4, 5]. The LVQ-algorithm
is able to reshape the prototypes gradually so that they are
more general representatives of a group of similar learning
samples. Finally, those prototypes which were used by only
a single writer in the training set were omitted from the final
prototype set.

2.3. Speedup methods

In our system, recognition time can be reduced in two
ways: 1) by ordering the prototypes according to the rough
shape of their first strokes [9], and 2) by pruning and or-
dering the prototypes on the basis of preclassification per-
formed with considerably down-sampled characters. The
ordering of the prototypes saves computation time as the
input character does not need to be completely matched
against all the prototypes. If the distance measure between
the unknown characters and a prototype exceeds the dis-
tance to the kth nearest prototype among the preceding ones,
the matching procedure can be interrupted, even though all
the points or strokes have not been matched. Parameter k
can be the number of prototypes the classification decision
is based on or the number of the candidate prototypes se-
lected for the final classification phase. Ordering of pro-
totypes has no effect on the recognition accuracy. Down-
sampling is an efficient way to reduce recognition time as
the complexity of DTW-matching depends quadratically on
the number of data points in a stroke. However, down-
sampling increases error rates as characters are represented
less accurately.

3. Data

The data used in the experiments consists of isolated
handwritten characters (’a’-’z’, ’å’, ’ä’, ’ö’, ’A’-’Z’, ’Å’,
’Ä’, ’Ö’, ’0’-’9’) collected from 45 subjects. The writing
equipment consisted of a special pressure sensitive tablet
attached to a Unix workstation. The resolution of the tablet
is 100 lines per millimeter and the sampling rate is at max-
imum 205 data points per second. A character is presented

as a series of the x- and y-coordinates of the moving pen
point.

The total number of characters was approximately
40000. Half of the subjects wrote the characters after a
dictation of a short story and without any visual feedback.
The other half wrote characters in random order. This time,
the characters were shown on the computer screen and were
recognized on-line. All the characters were written without
any constraints on the style. There seems to be no signif-
icant difference between the quality of the characters col-
lected with the two setups.

The locations of the characters were normalized by mov-
ing their mass centers to the origin of the coordinate sys-
tem. The size variations were normalized by scaling the
characters so that the lengths of the longer sides of their
bounding boxes are set to 100 units and their aspect ratios
remain unchanged. After these simple normalizations, the
number of data points per each stroke can be reduced by
two alternative preprocessing methods. Decimate(n) per-
forms a linear down-sampling as it keeps every (n

�
1)th

data point and abandons the intermediate ones. The same
number of data points (or one less) are abandoned from the
beginning of the stroke as from the end. If the number of
original data points is less than (n

�
1), only the first and last

data points are kept. ExtremePoints(d) is a nonlinear down-
sampling method. It keeps the first and last data point of the
stroke and the original extreme points in which the x- or y-
component of the pen point velocity changes its sign, ceases
to be zero, or becomes zero. However, if the Euclidean dis-
tance between two successive inflection points is less than
d units the latter point is abandoned. The distance between
the inflection points is measured along the trace of the pen.

The effects of the two preprocessing methods are illus-
trated in Figure 1. An unpreprocessed character is shown
in subfigure 1(a). From that subfigure, it can be seen that
the sampling rate is high and the pen point trajectory can
faithfully be represented with the data points as no pecu-
liar corners appear when adjacent data points are connected
with lines. The data points are unevenly distributed along
the trace of the pen. The data point density is high in
those parts where the pen has moved slowly or momentar-
ily stopped. When the character is preprocessed with Deci-
mate(n) method, as shown in subfigures 1(b), 1(d) and 1(f),
the data point density, and thus some implicit dynamic in-
formation on the pen point movements is preserved. How-
ever, all the data points are treated equally and some of
the original corners and cusps might be cut away and some
new ones introduced in rather arbitrary locations. Extreme-
Points(d) method, see subfigures 1(c) and 1(e), does not
preserve the data point density but is able to keep the cor-
ners in their original places and introduces new ones only
in some geometrically meaningful locations. Therefore, it
is not sensitive to variations of writing dynamics between

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) An example character and its
preprocessed versions when (b) Decimate(2),
(c) ExtremePoints(5), (d) Decimate(4), (e) Ex-
tremePoints(20), or (f) Decimate(8) has been
applied.

different subjects. In addition, character samples collected
using various sampling methods and devices can be used to-
gether when preprocessed with ExtremePoints(d) method.
This is a desirable property when using databases which
have several contributors.

4. Experiments

In all the experiments, the same character database was
used both for creating the prototype set and for testing.
However, due to the fine-tuning of the prototypes, none of
the prototypes was exactly similar with any of the test sam-
ples. The number of prototypes selected for fine-tuning was
327 and the final number of prototypes was 254. In the
first set of experiments, Decimate(n) and ExtremePoints(d)
methods were compared with each other in respect to their
effects on the recognition time and accuracy. All the char-
acter samples in the database were classified according to
the nearest neighbor rule by using the whole prototype set.
Prototypes were ordered according to the shape of their first
stroke. The results of these experiments are given in Ta-
ble 1. From there, it can be seen that both preprocessing
methods are efficient in reducing the average recognition
time tave. In the case of Decimate(n), the recognition accu-
racy clearly deteriorates and its variation between the writ-
ers increases if the value of the decimation parameter n is
increased. When ExtremePoints(d) is used as a preprocess-
ing method, recognition accuracy is more or less the same
with the different values of the distance parameter d. If the
parameter values are set so that the recognition time is ap-
proximately the same with the two preprocessing methods,
namely � n � 8 � d � 15 � or � n � 9 � d � 20 � , ExtremePoints(d)
seems to be better than Decimate(n) in respect to the total
error rate Et ot, the average error rate calculated for the error
rates of different writers Eave and their standard deviation
Estd.

Next, pruning and ordering of the prototypes on the ba-
sis of preclassification was experimented with. In the pre-
classification phase, both the prototypes and the character
samples were heavily down-sampled in order to find the N
best matching prototypes fast. In addition, prototypes were
ordered according to the shape of their first stroke. The fi-
nal classification was carried out with pruned prototype set
without preprocessing. Again, the classification decision
was based on the nearest neighbor rule. The values of the
parameters of the preprocessing methods were n � 8 and
d � 20. The results of the experiments are shown in Table 2.
In respect to the recognition time and accuracy, the differ-
ences between the result obtained with ExtremePoints(20)
and Decimate(8) preprocessing methods are insignificant.
Clearly, the most important factor is the number of candi-
dates selected in the preclassification phase. The average
recognition time for a single character can be reduced by

Table 1. Effects of Decimate(n) (Dec) and Ex-
tremePoints(d) (ExtrP) preprocessing on the
average recognition time of a single charac-
ter tave (ms) and recognition error rates. Etot

is the total error rate calculated for all char-
acter samples. Eave and Estd are the average
and standard deviation calculated for the er-
ror rates of different writers.

Preproc. tave Etot Eave Estd Estd � Eave

None 2472 17.4 19.0 5.5 0.29
Dec(1) 685 18.9 20.8 6.0 0.29
Dec(2) 338 18.6 19.9 4.9 0.25
Dec(5) 120 21.3 22.8 5.1 0.22
Dec(6) 98 21.9 23.2 5.2 0.22
Dec(7) 84 24.0 26.1 6.2 0.24
Dec(8) 74 24.9 26.4 6.4 0.24
Dec(9) 66 27.6 29.8 6.7 0.23
ExtrP(5) 168 24.5 25.9 5.6 0.22
ExtrP(10) 102 24.8 26.1 5.3 0.20
ExtrP(15) 78 24.1 25.0 4.4 0.18
ExtrP(20) 65 24.2 25.0 4.8 0.19
ExtrP(25) 57 25.3 26.4 4.8 0.18

76% without compromising the recognition accuracy by us-
ing either one of the preprocessing operations for ordering
and selecting N � 10 candidate prototypes for the final clas-
sification. As can seen from Figure 2 there is not much use
in founding more candidate prototypes than that. The prob-
ability that the best-matching prototype will be among the
ten candidates is over 99% with both preprocessing opera-
tions.

5. Conclusions

In this work, we have showed that the recognition time
of a prototype-based system can be reduced considerably by
performing the classification in two phases. First, the pro-
totypes and the unknown sample are heavily down-sampled
so that the matching can be performed fast. The down-
sampled prototypes are ordered and the N best ones are se-
lected for the second classification phase. The final classifi-
cation is carried out with the pruned and ordered prototype
set but without performing any down-sampling. In that way,
the recognition time could be decreased by 76% while the
error rate remained the same. We compared two alterna-
tive down-sampling methods, a linear and a nonlinear one.
According to the experiments, there are no significant dif-
ferences between the two methods in two-phase classifica-

Table 2. The average recognition time of a
single character tave (ms) and the error rates
when prototypes are pruned down to N can-
didates by using Decimate(8) (Dec) or Ex-
tremePoints(20) (ExtrP) preprocessing. Etot

is the total error rate calculated for all char-
acter samples. Eave and Estd are the average
and standard deviation calculated for the er-
ror rates of different writers.

Prepr. N tave Etot Eave Estd Estd � Eave

None - 2472 17.4 19.0 5.5 0.29
Dec 2 253 19.6 21.4 5.8 0.27
ExtrP 2 245 19.8 21.4 5.4 0.25
Dec 3 315 18.6 20.4 5.8 0.28
ExtrP 3 304 18.3 20.0 5.7 0.28
Dec 4 363 18.1 19.8 5.8 0.29
ExtrP 4 355 18.0 19.7 5.6 0.28
Dec 5 412 17.7 19.4 5.6 0.29
ExtrP 5 401 17.8 19.5 5.6 0.29
Dec 10 591 17.4 19.1 5.6 0.29
ExtrP 10 594 17.4 19.0 5.5 0.29
Dec 15 740 17.4 19.1 5.6 0.29
ExtrP 15 784 17.5 19.0 5.6 0.29

10
0

10
1

10
2

70

75

80

85

90

95

100

N

P
(t

he
 n

ea
re

st
 p

ro
to

ty
pe

 is
 a

m
on

g
th

e
N

 c
an

di
da

te
s)

, (
%

)

Dec(8)
ExtrP(20)

Figure 2. Probability that the best match-
ing nonpreprocessed prototype can be found
among the N candidates selected on the ba-
sis of the preprocessed prototypes. Dashed
and dash-doted lines correspond to cases in
which preprocessing is performed with Deci-
mate(8) or ExtremePoints(20), respectively.

tion. However, in one-phase classification, the error rates
obtained with the nonlinear method were less dependent on
the value of down-sampling parameter and there was less
variation between different writers. In addition, the non-
linear down-sampling method can make character samples
collected with different devices comparable with each other.

References

[1] Survey of the State of the Art in Human Language Technology.
http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html,
November 1995.

[2] T. M. Cover and P. E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory,
13(1):21–27, Jan. 1967.

[3] C. Frankish, R. Hull, and P. Morgan. Recognition accuracy
and user acceptance of pen interfaces. In Proceedings ACM
CHI’95 Conference on Human Factors in Computing Sys-
tems, 1995.

[4] T. Kohonen. Self-Organizing Maps, volume 30 of Springer
Series in Information Sciences. Springer-Verlag, 1997. Sec-
ond Extended Edition.

[5] J. Laaksonen, J. Hurri, E. Oja, and J. Kangas. Comparison
of adaptive strategies for on-line character recognition. In
Proceedings of International Conference on Artificial Neu-
ral Networks, pages 245–250, 1998.

[6] M. J. LaLomia. User acceptance of handwritten recognition
accuracy. In Proceeding of ACM CHI’94 Human Factors in
Computing Systems Conference, page 107, April 1994.

[7] I. S. MacKenzie, B. Nonnecke, S. Riddersma, C. McQueen,
and M. Meltz. Alphanumeric entry on pen-based computers.
International Journal of Human-Computer Studies, 41:775–
792, 1994.

[8] D. Sankoff and J. B. Kruskal. Time warps, string edits, and
macromolecules: the theory and practice of sequence com-
parison. Addison-Wesley, 1983.

[9] V. Vuori. Adaptation in on-line recognition of handwriting.
Master’s thesis, Helsinki University of Technology, January
1999. http://www.cis.hut.fi/ vuokkov/hcr/dtyo.ps.

[10] V. Vuori, M. Aksela, J. Laaksonen, E. Oja, and J. Kangas.
Adaptive character recognizer for a hand-held device: im-
plementation and evaluation setup. In L. R. B. Schomaker
and L. G. Vuurpijl, editors, Proceedings of the Seventh In-
ternational Workshop on Frontiers in Handwriting Recogni-
tion, pages 13–22, Amsterdam, September 2000. Nijmegen:
International Unipen Foundation. ISBN 90-76942-01-3.

[11] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. On-line adap-
tation in recognition of handwritten alphanumeric charac-
ters. In Proceedings of International Conference on Docu-
ment Analysis and Recognition, pages 792–795, 1999.

[12] R. G. Webster and M. Nakagawa. An interface-oriented ap-
proach to character recognition based on a dynamical model.
Pattern Recognition, 31(2):193–203, 1998.

