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Timing of investment under technological and
revenue related uncertainties∗

Pauli Murto†

March 20, 2003

Abstract

We consider the effects of technological and revenue related uncertain-
ties on the timing of irreversible investment. The distinction between the
two types of uncertainty is first characterized within the optimal stopping
framework. Then, a specific model motivated by investment in wind power
production is presented. Technological progress is modeled as a Poisson ar-
rival process that reduces the cost of investment, and revenue uncertainty is
modeled as a geometric Brownian motion process. We show that in the ab-
sence of revenue uncertainty the technological uncertainty does not affect the
optimal investment rule. However, when combined with revenue uncertainty,
increased technological uncertainty makes investment less attractive relative
to waiting.

JEL classification: D81, G31, O31, Q40
Keywords: irreversible investment, technological uncertainty, real op-

tions, wind power

1 Introduction
Technological progress affects greatly the development of industries. Energy sector
may serve as an example of this. For instance, in the 1980’s the technology imported
from materials science and the space programme made turbines much more efficient
than before. This made it possible to build smaller and cheaper natural gas burning
generation units, which led to a dramatic reduction in the optimal power plant size
(Hunt and Shuttleworth, 1996). Due to this and a number of other technological
innovations the cost of generating a kWh of electricity has reduced considerably
during the last decades.
A current trend in the energy sector is the increasing use of renewable tech-

nologies such as wind power and biomass. There is a political support for this
development motivated mostly by environmental reasons and the desire to reduce
dependence on exports. The European Union, for example, has set an explicit target
of increasing the share of renewables in energy consumption to 12 % by 2010 (Eu-
ropean Commission, 1997). However, at current technologies, renewable sources
of energy are not competitive with fossil fuels without substantial subsidies (e.g.
European Commission, 2001). Therefore, how fast and to what extent renewable
technologies are able to take over the energy supply depends much on the progress
in these technologies in the forthcoming years and decades.
∗The financial support from the Nordic Energy Research is gratefully acknowledged. The

author thanks Fridrik Baldursson, Hannele Holttinen, Juha Honkatukia, Marko Lindroos, Pierre-
Olivier Pineau, Rune Stenbacka, and participants of the workshop on environmental and resource
economics at University of Helsinki, April 2002, for helpful comments.
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The objective of this paper is to provide a deeper look at the influence of tech-
nological progress on investment. We approach the issue by looking at the optimal
behavior of a value maximizing firm, which faces an investment opportunity subject
to exogenous technological progress. Different uncertainties play a key role in this
context. For example, with capital-intensive renewable energy projects with long
payback times, the foremost uncertainty concerns the revenues that the plant will
generate after the up-front investment cost has been sunk. For a power plant, this
is mostly due to the uncertain development of electricity price.1 Such revenue un-
certainty should certainly be taken into account by an investor facing the decision
of when, if ever, to carry out a particular project.
However, technological progress itself contains another source of uncertainty

that has attained less attention. Even if the subsequent technological improve-
ments would not affect the values of production facilities that already exist, an
investor deciding whether to carry out an investment project now or perhaps later
must take into consideration the fact that postponing the investment may allow
the accomplishment of the project later with an improved technology. For projects
with pay-back horizons extending over many decades, such considerations may be
very important. The history of wind power production supports this view with
examples of cost reducing technological innovations.2 As reported in Krohn (2002):
“The economics of wind energy has improved tremendously during the past 15 years
tumbling with a factor of five.”
There is a conceptual difference between uncertainty in technological progress

and revenue. Namely, a characteristic property of technological progress is that
it moves in one direction only. In other words, innovations can only improve the
best-available technology, not worsen it. Therefore, when pointing to uncertainty in
technological progress, we refer to the speed at which the technology improves, not
the direction in which it moves. This is in contrast with the revenue uncertainty,
where the income stream is typically subject to both up- and down-ward shocks.
In this paper we consider the effects of these two types of uncertainties on

the timing of investment. The analysis is based on the theory of the irreversible
investment under uncertainty. This approach, also referred to as the real options
approach, considers problems where a firm should choose the optimal timing of
investment when the decision can not be reversed and the value of the project evolves
stochastically. Important contributions to the theory include, e.g., McDonald and
Siegel (1986) and Pindyck (1988), while a thorough review of the techniques and
literature is given in the book of Dixit and Pindyck (1994).3

When classifying the existing real options literature according to the above men-
tioned two types of uncertainties, almost all the papers fall to the category of revenue
uncertainty. Exceptions in the other category are Grenadier and Weiss (1997) and
Farzin et al. (1998). An earlier related study is Balcer and Lippman (1984). How-
ever, these papers consider only technological uncertainty, whereas we specify the
distinction between the two types of uncertainties and show how they act together.

1Other sources of uncertainty are also possible depending on the institutional setting and the
production technology. For example, the market for green certificates has been proposed in Europe,
where power producers using renewable technologies receive an additional income from selling the
certificates. See, e.g., Amundsen and Mortensen (2001) or Jensen and Skytte (2002) for economic
analysis of such markets.

2 See, e.g., the history of wind turbines at the www-site of the Danish Wind Industry As-
sociation: www.windpower.org. Major technological breakthroughs are reported: ”The 55 kW
generation of wind turbines which were developed in 1980 - 1981 became the industrial and tech-
nological breakthrough for modern wind turbines. The cost per kilowatt hour (kWh) of electricity
dropped by about 50 percent with the appearance of this generation of wind turbines”.

3Applications in energy investments include Paddock et al. (1988), Martzoukos and Teplitz-
Sembitzky (1992), Pindyck (1993), Brekke and Schieldrop (1999), and Venatsanos et al. (2002).
Other related applications are, e.g., Brennan and Schwartz (1985) and Lumley and Zervos (2001),
who consider natural resource investments.
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Also Alvarez and Stenbacka (2001, 2002) consider technological uncertainty along-
side revenue uncertainty, but in their models this concerns only events that occur
after the irreversible investment has been undertaken. We are interested in exoge-
nous technological progress, which the investor observes already before undertaking
the project.
Technically, the problem of choosing the timing of irreversible investment is an

optimal stopping problem. To emphasize this, we start the paper with a general
model of investment in that framework. This allows us to characterize the difference
from the investor’s point of view between the uncertainty in revenue stream and
in technological progress. We show that in the latter case, which we characterize
by the property that the state variables are non-decreasing stochastic processes,
the solution gets a very intuitive form. Namely, the investment is carried out at
a moment when the opportunity cost of delaying the project equals the expected
change in its net present value. This means that the optimal decision of whether to
invest now or later depends only on the expected path of the project value, not on
its probability distribution. This rule does not, however, work with revenue uncer-
tainty, because then the stochastic state variables fluctuate both up and down, and
the investor must take into account the value of flexibility in being non-committed
to the investment. This option value damps investment, and is created by the fact
that conditions may later turn worse thus making the investor better off by having
held back from investing.
We then proceed to present a more specific model of an investment opportu-

nity where both technological and revenue related uncertainties are present. The
technological progress is modeled as a Poisson arrival process, where innovations
that reduce the cost of investment arrive at random times. The revenue stream
that the investment would generate follows a geometric Brownian motion. The in-
vestor observes these two processes, and must decide when the investment cost is
low enough and revenue stream is high enough to carry out the investment. The
model is motivated by wind power investments, in which case the investment op-
portunity is represented by a given site suitable for wind power production, and
the revenue stream is represented by the electricity price. The site can be seen as a
natural resource owned by an investor who wants to optimize its utilization in order
to maximize its value. To see the analogy to options theory, note that the site is
a real-option contingent on the two underlying stochastic factors, giving the owner
an opportunity but no obligation to develop it for wind power production.
The uncertainty in the technological progress gives rise to some interesting find-

ings. In the absence of revenue uncertainty (i.e. when the volatility of the revenue
process is set to zero), the technological uncertainty as such does not matter. The
investor can act as if the actual stochastic process for the investment cost were
replaced by its expected path. However, when the revenue uncertainty is added in
the model, the technological uncertainty starts to matter as well. Namely, keeping
the expected path of the investment cost fixed, the higher the uncertainty in the
process, the more reluctant the investor is to invest. It is perhaps against common
intuition that the effect of technological uncertainty depends crucially on whether
the revenue stream is deterministic or stochastic.
It is worth emphasizing that even if motivated by wind power investments, the

relevance of our findings is not restricted to energy sector. One can think of appli-
cations in many different areas with similar characteristics. A possible application
could be, for example, the development of a new product, where the developer must
decide when the product and the market conditions are good enough for market in-
troduction. Moreover, instead of investing in a new production unit (as in the case
of wind power investment), one can also think of the adoption of a new technology
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to replace an older one.4 For example, think of an organization planning to update
to the latest computer operating system, a farm considering to switch to a new
cropping technology, or a factory considering to switch to a more efficient produc-
tion line. In all of these cases the decision maker must take into account the fact
that delaying the investment may allow one to later switch to an improved version.
Moreover, it is not difficult to imagine uncertainties in the arrival of technological
improvements, or in the value that the switching would create.
The paper is structured as follows. In section 2 we review a general model

of investment in the optimal stopping framework. The role of this section is to
characterize the distinction between the uncertainties in technological progress and
in revenue, and to enable one to explain the results of the later sections. We
illustrate the main message of the section through a series of examples given in
Appendix A. In section 3, we present the specific model of investment where both
technological and revenue uncertainties are present. The model can not be solved
in closed form, but in section 4 we solve it in three different special cases, which
together capture the main insights of the paper. Section 5 concludes.

2 Investment as an optimal stopping problem
In the literature of irreversible investment under uncertainty, a typical investment
problem is characterized by the following three features. First, the value of the asset
obtained with the investment is a stochastic process, second, the investment decision
is irreversible, and third, the investor is free to choose the timing of investment. In
such a setting the problem of choosing the timing of investment is technically an
optimal stopping problem. In this section, we review the basic ideas of such a
problem. Using this formulation we then characterize the distinction between the
problem where uncertainty concerns the revenue stream and the problem where
uncertainty concerns the arrival of technological innovations. To keep the key ideas
easily readable, we maintain the lowest possible level of technical formality. See, e.g.,
Øksendal (2000) or Karatzas and Shreve (1998), for formal treatments of optimal
stopping problems.

2.1 General problem

We consider an investor who has an opportunity to make a single irreversible invest-
ment. The time is continuous and infinite, and we denote by t ∈ [0,∞) the time
index. The value of the investment is affected by some stochastic factors. More
precisely, we have n real-valued stochastic processes denoted

©
Xi
t

ª
, i = 1, ..., n. We

denote by Xt =
£
X1
t , ...,X

n
t

¤ ∈ Rn the vector containing the values of the processes
at time t. We assume that the processes are independent5 Markov processes,
and thus we say that Xt represents the state of the model. By {Xt} we refer
to the process with values in Rn that contains processes

©
Xi
t

ª
, i = 1, ..., n, and by

X =
£
X1, ...,Xn

¤
simply to the value of the state without referring to the calendar

time.
Typically, the stochastic factors are variables that affect the revenue stream that

is obtained once the investment has been undertaken, for example output prices or
4There is an extensive theoretical literature dealing with different aspects of the problem. Many

papers focus on the strategic interaction (see, e.g., Hoppe, 2000, or Rahman and Loulou, 2001, for
recent contributions, or Reingamum, 1981, or Fudenberg and Tirole, 1985, for well known older
papers), but there are also papers that focus on uncertainty, see, e.g., Balcer and Lippman (1984),
or Farzin et al. (1998).

5The results do not rest on the assumption that the processes are independent. In reality,
prices of commodities are typically correlated. The assumption is made because it simplifies the
exposition by reducing the need for formalism.
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demand. We use the term revenue uncertainty to refer to such uncertainty.6 The
book by Dixit and Pindyck (1994) reviews extensively this kind of models. They
are mostly in one dimension, and the stochastic process used in most of the cases
is the geometric Brownian motion.
However, technological progress may also represent a relevant stochastic factor.

Improving technology may, for example, lower the cost of investment thus increasing
the net value of investment, as we will assume in section 3. The important property
of technological progress is that it typically moves in one direction only, whereas
revenue uncertainty is due to both positive and negative random fluctuations. We
will consider the effect of this refining property characteristic to technological un-
certainty in section 2.2.
Assume that the value of the investment project at time t depends on the state

Xt, but not on the calendar time. Thus, if the investment is undertaken at time t,
the net present value of the project is V (Xt). The investor observes the evolution
of the processes

©
Xi
t

ª
and knows exactly the probability laws that they follow. The

problem is to choose the timing of investment in such a way that the expected dis-
counted value of the investment is maximized, i.e., to choose the time τ in order to
maximize E (e−rτV (Xτ )). Since it is not possible to anticipate the future, the deci-
sion of whether to stop or not at a given time can only depend on the past behavior
of the processes

©
Xi
t

ª
. Technically, this means that the investment time must be

a stopping time.7 We denote by F (Xt) the value of the investment opportunity
given the current state Xt when the timing of investment τ∗ is chosen optimally:

F (Xt) = E
³
e−r(τ

∗−t)V (Xτ∗)
´
= sup

τ
E
³
e−r(τ−t)V (Xτ )

´
, (1)

where r is the discount factor8, E denotes the expectation with respect to the
processes

©
Xi
t

ª
when they start from Xt, and the supremum is taken over all

stopping times τ for {Xt}. Obviously, since it is always possible to choose τ = t, it
must be that F (Xt) ≥ V (Xt).
We have to make certain assumptions on the properties of the stochastic processes

and the value of the project to make sure that the problem has a certain nice
structure. For the processes

©
Xi
t

ª
we require two properties besides the Markov

property. First, we assume that they are time-homogenous. This means that the
calendar time does not affect the evolution of the process.9 Second, to have certain
regularity we require a positive serial correlation, i.e., persistence of uncertainty,
meaning roughly that the higher the value of the process is now, the higher the
probability that the value is high in the future. For the value of the project we
require that V is monotonic and continuous in all components Xi. Without loss of
generality, we assume that V is increasing in all of its arguments.
All of the assumptions make economically sense. In this paper, the stochas-

tic processes considered are the geometric Brownian motion and the Poisson jump
process, which are time-homogenous Markov processes with positive serial correla-

6Of course, we may also have stochastic variables that affect the cost flows that occur after the
investment has been undertaken, such as input prices. The uncertainty in negative cash flows has
in essence the same effect as uncertainty in positive cash flows. For simplicity, however, we use
the term revenue uncertainty throughout the paper.

7 See, e.g., Øksendal (2000) for a formal definition.
8This assumes that the investor is risk neutral. However, the model may also be interpreted

so that the stochastic factors are spanned by financial markets and the objective is stated using
the equivalent risk-neutral valuation. In that case, the risk-aversity is accounted for by presenting
the stochastic processes under an appropriately adjusted probability measure (see, e.g., Dixit and
Pindyck, 1994, section 4.3.A).

9More precisely, the probability distribution of Xi
t+s conditional on X

i
t = xi is equal to the

probability distribution of Xi
t+h+s conditional on X

i
t+h = x

i for any t, h, s ∈ (0,∞) and xi ∈ R.
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tion. The value function that we consider is linear in the state value, and therefore
of course monotonic and continuous.
Together these assumptions imply several important things about the structure

of the problem. First, the time-homogeneity and Markov properties mean that at
a given time t, the decision of whether to stop or wait depends only on the current
value of the state Xt, not on the calendar time t or the history of the processes. This
implies that the state-space can be divided into two parts, the stopping region where
it is optimal to invest and the continuation region where it is optimal to wait. Since
V is continuous, the stopping region can be expressed as a closed set Ω ⊂ Rn. The
optimal investment time is a first-passage time, i.e., the first time when the state
Xt enters Ω. Since the calendar time does not affect the investment decision, we
will from here on leave the subscript t out and refer by X to the current state value.
Second, because of the persistence of uncertainty and the fact that V is increasing
in all components of X, increasing the values of the stochastic processes should
always make the investing more tempting. Therefore, the stopping region must be
a connected region with the property that if a point X1 =

£
X1
1 , ...,X

n
1

¤ ∈ Ω, then
X2 =

£
X1
2 , ...,X

n
2

¤ ∈ Ω whenever Xi
2 ≥ Xi

1 for all i = 1, ..., n..10 The investment
occurs at the first moment when the state X crosses the border of Ω, which we
denote ∂Ω. The problem is thus to find the optimal ∂Ω.
We have presented the problem in a too general form for presenting a detailed

solution method. The standard technique to approach the problem is to use the
dynamic programming. This leads to the Bellman function, which in the present
case takes the form of the following condition that must hold in the continuation
region:

rF (X) dt = E (dF (X)) , when X /∈ Ω, (2)

where dF (X) is the change in the value of F caused by the (stochastic) change
in X within an infinitesimal time increment dt. If X follows an Ito process (such as
the Brownian motion), then an expression for dF can be derived using Ito’s lemma.
The intuitive meaning of (2) is that the opportunity cost of holding the investment
option through the interval dt, namely rF (X) dt, must be equal to the expected
gain in the value of the investment opportunity, namely E (dF (X)).
Whenever X is in the stopping region, the rational investor invests without any

delay, so the value of the option to invest must be equal to the net present value of
the project:

F (X) = V (X) , when X ∈ Ω. (3)

To solve the problem, one should find Ω and a function F (X) such that (2) and
(3) are satisfied. Condition (3) is especially relevant at the boundary ∂Ω (∂Ω ⊂ Ω,
because Ω is closed). Conditions (2) and (3), however, are not normally sufficient
for obtaining a unique solution. In many cases, the optimal solution is found by
applying an additional condition called the high contact principle or the smooth-
pasting condition. The condition says that at the boundary ∂Ω, the first derivatives
of F with respect to the components of X must coincide with the derivatives of V ,
i.e., F must be “pasted smoothly” to V .11 As an example of using the technique,
we review in the appendix A the basic model used by Dixit and Pindyck (1994) in
their book (example 1).
10To be exact, we would need a more strict condition on V to make sure that the stopping region

is indeed connected. See Dixit and Pindyck (1994), pages 128-130, for the one-dimensional case.
11 See Øksendahl (2000) for the applicability of the principle in the case where X is defined

by a stochastic differential equation. Dixit and Pindyck (1994) provide an intuitive justification
(Chapter 4, Appendix C).
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2.2 Technological uncertainty

In example 1 (appendix A), the uncertainty is characterized by the geometric Brown-
ian motion, which is a process that continuously fluctuates up and down. Such a
process does not, however, seem a proper description of the uncertainty in techno-
logical progress. Namely, technological progress is typically driven by innovations
that improve the current technology. Therefore, using a state variable to model
the current level of technological progress, it is natural to think that this vari-
able must be non-decreasing in time.12 With such a process, uncertainty concerns
merely the speed at which it grows, not the direction in which it moves. Therefore,
in the following we consider how such a refinement changes the problem. By the
property that the process

©
Xi
t

ª
is non-decreasing, we mean that the probability

P
¡
Xi
t2 < X

i
t1

¢
= 0 whenever t2 > t1.

We now show that this property is very important for the nature of the problem.
Namely, assuming that all the processes

©
Xi
t

ª
are non-decreasing leads to a dra-

matic simplification. Remember that when X ∈ Ω, it is always optimal to invest,
i.e., we must have F (X) = V (X) when X ∈ Ω. Also, as discussed before, Ω is
such a region that if X1 =

£
X1
1 , ...,X

n
1

¤ ∈ Ω, then X2 = £X1
2 , ...,X

n
2

¤ ∈ Ω whenever
Xi
2 ≥ Xi

1 for all i = 1, ..., n. This means that if X
i
t are non-decreasing, then X can

not exit Ω once it has entered. Then it must also hold at any point of the stopping
region including its boundary that:

E (dF (X)) = E (dV (X)) when X ∈ Ω. (4)

From (2), (3), and (4) it then follows that at the boundary it must hold that

rV (X) dt = E (dV (X)) when X ∈ ∂Ω. (5)

This is a considerable simplification, because (5) means that it is optimal to
invest at such a moment when the opportunity cost of waiting, i.e., the stream of
benefit lost within time increment dt due to waiting, rV (X) dt, exceeds the expected
change in the value of the investment, E (dV (X)). This is similar to the first-order
condition of the corresponding deterministic problem, where the expected change
in the value of investment is replaced by its actual change. This means that one
does not need to account for the probability distribution of the increment in V (X),
it is sufficient to consider the expected change of the value. From the solving point
of view, the simplification is that one does not need to solve F (X) in order to find
the optimal investment region.13

It should be emphasized that this result does not mean that the investment
decision could be done using the simple net present value method according to which
an investment project should be taken whenever its net present value is positive.
Such an investment rule is “static” in the sense that it does not account for the
development of the project value even if it were deterministic. Thus, our results do
not contradict with Farzin et al. (1998), who demonstrate that the optimal pace
of technology adoption is optimally slower than implied by the net present value
method, because they use that ”static” investment rule as the point of comparison,
but (5) requires that the current net present value is compared with its expected
improvement. In our opinion the interpretation of their results can be significantly
clarified with (5): it is actually the expected rate of technological progress rather
12On the other hand, Grenadier and Weiss (1997) describe technological progress by a state

variable that follows the geometric Brownian motion, but their state variable does not directly
determine the quality of available technologies. The state variable is used as an indicator that
triggers technological improvements.
13Assuming that the problem “behaves nicely” so that the first order condition is sufficient, one

can determine the boundary of the optimal investment region simply by finding the surface where
(5) is satisfied.
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than uncertainty that determines whether it is optimal to investment. To confirm
this point, we show in the appendix A how their main result is obtained using (5).
An intuitive explanation for the result is that if the stochastic processes are

non-decreasing, then there is no option value associated with flexibility, i.e., value
in being non-committed to the investment, because there is then no chance that
conditions turn more unfavorable in the future. This value of flexibility is a key
element in the options methodology, and is the reason why (5) does not normally
hold. One can gain further intuitive support by relating the result to a simple two-
period setting often given in the literature (e.g. Dixit and Pindyck, 1994, chapter
2). Consider a firm that can trigger an irreversible investment either at period 1
or at period 2, and where there are two possible states of nature at period 2 such
that given that the investment was not carried out at period 1, it is optimal to
invest if the “good” state is reached, but not if the “bad” state is reached. When
considering whether it is optimal to invest at period 1, one must compare the
value of the investment at that period with the expected payoff of following the
optimal investment policy at period 2. In continuous time, the correspondence of
this comparison is the standard Bellman equation (2). However, if the problem is
modified so that one knows a priory that it will be optimal to invest in period 2
irrespective of the state of the nature, then it suffices to do the comparison with
the expected value of the investment at period 2; one does not need to bother what
the optimal investment policy is at period 2. This second case corresponds loosely
to our model with non-decreasing processes: if it is optimal to invest at some time
instant, it must also be optimal to invest at the “next instant”. Thus, there is
no need for considering the optimal action at the next instant, and as a result, a
condition where the optimal value function F is not present can be used.
Notice that for (4) to hold, it must be that all components of X are non-

decreasing processes. In one dimension this is trivial, of course. In the appendix
A we illustrate the result and its validity with two examples. First, in example 2,
we show how the one-dimensional model presented in Farzin et al. (1998) can be
solved in a simple way using condition (5). Then, in example 3, we try to apply the
result to the model given in example 1, and demonstrate that the technique gives a
wrong answer if the stochastic processes are not non-decreasing.

3 Model with technological and revenue related
uncertainties

In this section we develop a specific model, where both technological and revenue
related uncertainties are present. The purpose is to study how these uncertainties
together affect the optimal timing of investment.
The model is motivated by wind power investments. We may envision a given site

suitable for wind power production, which does not have any potential alternative
use. The site can be understood as an asset, the value of which is contingent on the
cost of developing it for wind power production as well as on the revenue stream that
such a wind production unit would generate. We consider the problem of choosing
the optimal timing to develop the site in order to maximize its value.
We make the following assumptions to characterize the problem. The invest-

ment is irreversible, but the timing can be postponed without any constraints. Once
the investment has been undertaken, it produces one unit of output per time unit.
The only cost that the investor ever faces is the investment cost.14 However, the
14 In other words, we have the simplifying assumption that there are no variable production

costs. This is a plausible assumption for wind power production. In reality, however, there are
operations and maintenance costs, but we assume that they are fixed and deterministic. Within
our model framework fixed flow costs can be included in the investment cost, because the investor
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technological progress reduces the investment cost. The level of technological de-
velopment at time t is, therefore, summarized as the current investment cost, i.e.
the amount of money that it would take to build the plant at that time. The tech-
nological progress is exogenous, and is driven by innovations that arrive at random
times. More specifically, we assume that the investment cost at time t > 0 is given
by process It:

It = I0φ
Nt , (6)

where I0 is the investment cost at time t = 0, Nt is a Poisson random variable
with mean λt, and φ ∈ [0, 1) is a constant reflecting the magnitude of innovations
(the smaller the constant, the more each innovation reduces the cost). The parame-
ter λ is the mean arrival rate of innovations. It is easy to confirm that the expected
value of It is an exponentially declining function of time:

E [It] = I0e
−λt(1−φ) = I0e−γt, (7)

where we have denoted γ = λ (1− φ). This means that if the parameters λ and
φ are adjusted in such a way that the term λ (1− φ) is kept constant, the expected
path of the technological progress is kept unchanged. An increase in the intensity of
innovation arrivals (increase in λ) must be compensated by smaller steps (increase
in φ). However, such adjustments modify the probability distribution of the future
investment cost, as can be seen from the variance of It:

V ar [It] = I
2
0

³
e−λt(1−φ

2) − e−2λt(1−φ)
´
= I20

h¡
e−γt

¢(1+φ) − ¡e−γt¢2i . (8)

It is easy to see from (8) that if λ is increased towards ∞, and φ is corre-
spondingly increased towards 1 in such a manner that the term γ = λ (1− φ) is
kept constant, then V ar [It] approaches zero. Thus, uncertainty can be decreased
by increasing λ and φ, the limiting case being deterministic exponential decline:
It = I0e

−γt. On the other hand, the highest level of uncertainty is obtained when
φ is reduced to zero, which corresponds to the case where the investment cost col-
lapses to zero at the first innovation. These opposing two cases will be considered
later as examples.
We denote the price of output at time t by Pt. In case of wind power production,

it includes the electricity price plus the possible additional revenue that the plant
owner receives, for example the price of tradeable green certificates. We assume
that once the plant has been built, it produces the revenue stream Pt forever.15 Pt
is a stochastic process that we assume to follow the geometric Brownian motion:

dPt
Pt

= µdt+ σdz, (9)

where µ and σ are constants reflecting the drift and volatility of the process, and
dz is the standard Brownian motion increment. We assume that 0 ≤ µ < r, where
r is the risk free rate of return. From the properties of the geometric Brownian
motion, it follows directly that the expected value of the price at some future time
is:

E [Pt] = P0e
µt. (10)

The degree of revenue uncertainty can be adjusted by changing σ. As seen from
(10), such changes do not change the expected price at a given future time.

can invest a sufficient sum of money in bonds, for example, in order to ensure a sufficient flow of
income to cover the subsequent deterministic flow costs.
15 Infinete life time is assumed for simplicity. In reality, the lifetime of a wind turbine is typically

around 20 years.
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When the plant has been built, its value at time t is the expected discounted
sum of cash flows it produces in the future:16

g (Pt) = E

 ∞Z
s=t

Pse
−r(s−t)ds

 = ∞Z
s=t

Pte
µ(s−t)e−r(s−t)ds =

Pt
r − µ. (11)

At the time of investment, the investor pays It to obtain the plant. The payoff
of the investment is thus V (Pt, It) = Pt

r−µ − It. Obviously, the problem is of the

same form as discussed in section 2. Denoting X1
t = Pt and X2

t = (It)
−1, for

example, it is easy to confirm that all assumptions are satisfied by {Xt} and V .
The calendar time does not affect the problem, so we can leave the subscripts out
and denote the state of the model simply as (P, I). The value of the investment is
thus V (P, I) = P

r−µ − I, and the value of the option to invest is:

F (P, I) = sup
τ
E

·
e−rτ

µ
Pτ
r − µ − Iτ

¶¸
, (12)

where Pτ and Iτ refer to the output price and investment cost at some future
time τ when the processes start from P and I and evolve according to (6) and (9).
As discussed in section 2, the solution to the problem must be a stopping region

in the (P, I)-space, which we denote by Ω. Notice that one can enter Ω in two ways:
either by continuous diffusion of P or by a sudden jump of I. We propose next that
Ω has a particularly simple form.

Proposition 1 The optimal stopping region Ω must be of the form:

Ω =

½
(P, I)

¯̄̄̄
P

I
≥ p∗

¾
,

where p∗ is a constant to be determined.

Proof. In the appendix B.
The key to the result is the observation from equation (12) that F (kP, kI) =

kF (P, I), i.e. F is homogenous of degree one in (P, I). Thus, dividing F by I
results F (P,I)

I = F
¡
P
I , 1

¢
, which is a function of the fraction of P and I only. The

model is simplified considerably by denoting this fraction by a new variable. We
adopt the following definitions, similar to Dixit and Pindyck (1994), section 6.5:

p ≡ P

I
, (13)

f (p) ≡ F (p, 1) . (14)

Expressed in another way, (14) means that F (P, I) = If (p). The new variable
p follows the combined geometric Brownian motion - jump process:

dp

p
= µdt+ σdz + dq, (15)

where

dq =

½
0 with probability 1− λdt,¡

φ−1 − 1¢ with probability λdt.
(16)

16We assume risk-neutrality here. However, we may alternatively assume that the fluctuations
in P are spanned by traded assets. In that case we interprete the problem using equivalent risk-
neutral valuation. Then equation (9) is given under the martingale measure, in which case the
growth rate µ differs from the “real” growth rate.
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We know from proposition 1 that the optimal solution is to invest at the first
moment when p rises above some threshold level p∗. The problem is to find this
threshold. With this in mind, we return to the original problem (12). The Bellman
equation (2) is:

rF (P, I) dt = E (dF (P, I)) , when (P, I) /∈ Ω, (17)

where dF (P, I) is the infinitesimal change in F (P, I) given P and I evolve
according to equations (6) and (9). Using Ito’s lemma and the fact that I drops to
φI at probability λdt within infinitesimal time increment dt, we obtain the following
expression for E (dF (P, I)):

E (dF (P, I)) = (r − δ)PFPdt+
1

2
σ2P 2FPPdt+ λ [F (P,φI)− F (P, I)] dt, (18)

where FP and FPP refer to the first and second derivatives of F with respect
to P evaluated at (P, I). Dividing by dt and arranging terms, (17) becomes the
following partial differential equation:

1

2
σ2P 2FPP + (r − δ)PFP − rF (P, I) + λ [F (P,φI)− F (P, I)] = 0, (19)

Using (13) and (14), we obtain:

FP = I
∂f (p)

∂p

∂p

∂P
= If 0 (p)

1

I
= f 0 (p) , (20)

FPP =
∂f 0 (p)
∂p

∂p

∂P
=
f 00 (p)
I

, (21)

F (P,φI) = φIf

µ
P

φI

¶
= φIf

µ
p

φ

¶
, (22)

where f 0 (p) and f 00 (p) denote the first and second derivatives of f evaluated at
p. Substituting (13), (14), and (20) - (22) in (19) and dividing by I results in:

1

2
σ2p2f 00 (p) + µpf 0 (p)− (r + λ) f (p) + λφf

µ
p

φ

¶
= 0. (23)

The value of the investment option is thus a function F (P, I) = If (p) such
that f (p) satisfies (23) whenever (P, I) /∈ Ω, i.e. whenever p < p∗. In addition, the
value function F must satisfy the following boundary conditions at the boundary
p = P

I = p
∗:

F (P, I) =
P

r − µ − I, when
P

I
= p∗, (24)

FP =
1

r − µ , when
P

I
= p∗. (25)

The first one is the value matching condition and the second one is the smooth
pasting condition. The conditions can be written in terms of f and p:17

17 In fact, there is also a second smooth-pasting condition: FI = −1. Since FI = f (p) +
If 0 (p) −P

I2
= f (p)− pf 0 (p), this condition can be written as f (p∗) = p∗f 0 (p∗)− 1. It is easy to

see that the condition is already implied by (26) and (27).
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f (p∗) =
p∗

r − µ − 1, (26)

f 0 (p∗) =
1

r − µ. (27)

Moreover, if p approaches zero, the value of the investment opportunity must
approach zero. This adds one more condition:

lim
p→0+

f (p) = 0. (28)

There is a special difficulty characteristic to our problem that can be detected
by looking more carefully at (23). Namely, the differential equation (23) is not

“local” to the point p, because it contains the term f
³
p
φ

´
, which is the value of the

solution function at the point p
φ > p. When p is sufficiently close to p∗, we have

p
φ > p

∗, and (23) contains the value of f (·) inside the stopping region. The reason
for this property of the problem is that the innovations may move the state directly
across the boundary between stopping and continuation regions, which leads to an
immediate investment. Whenever p > p∗, (3) gives F (P, I) = P

δ − I. This means
that:

f (p) =
p

r − µ − 1 ∀p > p
∗. (29)

Having this, the problem is well defined. One must find a real valued function
f and a positive number p∗ such that f satisfies (23) when p ≤ p∗, (29) when
p > p∗, (26) and (27) at p = p∗, and (28) when p→ 0. Unfortunately, even if it can
be shown that a unique solution for p∗ exists, there is no closed form solution for
f (p) that would satisfy all the conditions. It is possible to construct a numerical
procedure for solving p∗,18 but instead of going into that we concentrate in the next
section on several special cases, which can be solved analytically. Together, they
capture the main insights of the paper.

4 Analytic solutions
In order to see how the two uncertainties affect the problem, we consider several
special cases that are obtained by adjusting the parameters σ, λ, and φ in such
a way that the expected price and investment cost paths remain unchanged. The
value of σ does not change the expected value of future output price as seen from
(10), so σ can be varied directly. The greater the volatility σ, the greater the
revenue uncertainty. However, to adjust λ and φ in a way that does not affect the
expected future investment cost, we must keep γ = λ (1− φ) fixed. The greater
the parameter φ, the greater the parameter λ, and the smaller the technological
uncertainty.
Thus, in all three cases that follow, we have E [Pt] = P0eµt and E [It] = I0e−γt,

where γ and µ are fixed constants. Since the value of the investment, V (P, I) =
P
r−µ − I, is a linear combination of P and I, its expected value also remains un-
changed, namely:

E [V (Pt, It)] =
P0
r − µe

µt − I0e−γt. (30)

18A sketch of such a procedure available from the author.
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4.1 Special case A: deterministic price process

First, we consider the special case where σ = 0 in equation (9). Then Pt is a
deterministic increasing function of time given by

Pt = P0e
µt, (31)

where P0 is the initial value of P . DenotingX1 = P , andX2 = I−1, the problem
is of the form discussed in section 2. Moreover, since P is now deterministic and
increasing, both of the processes

©
X1
t

ª
and

©
X2
t

ª
are non-decreasing. Therefore,

we can use the condition (5) to find the boundary of Ω. In section 3 we stated that
the boundary must be of the form ∂Ω =

©
(P, I)

¯̄
P
I = p

∗ª, where p∗ is a constant
to be determined.
The expected change in V given the state (P, I) is:

E (dV (P, I)) =
µP

r − µdt+ λdt (1− φ) I =

·
µP

r − µ + γI

¸
dt. (32)

Therefore, condition (5) says that:

r

µ
P

r − µ − I
¶
dt =

·
µP

r − µ + γI

¸
dt. (33)

This simplifies to P/I = r + γ. Thus, denoting by pA the optimal threshold (A
for special case A), the solution is:

pA = r + γ. (34)

Note that pA depends on λ and φ only through γ, which is assumed fixed. This
means that the degree of uncertainty does not affect the decision of whether to
invest or not given the current price and investment cost. The decision maker can
replace the actual investment cost process with its expected value. In more practical
terms, an estimate of the time trajectory of the future investment cost is sufficient
for the correct investment decision as long as it is unbiased (i.e. it represents the
expected value of the process). There is no need for an estimate concerning the
level of uncertainty associated with the process.
To gain more insight, we can also derive the result directly using (23). Since

σ = 0, (23) becomes:

µpf 0 (p)− (r + λ) f (p) + λφf

µ
p

φ

¶
= 0. (35)

At the threshold pA, (26) and (27) must hold:

f
¡
pA
¢
=

pA

(r − µ) − 1, (36)

f 0
¡
pA
¢
=

1

(r − µ) . (37)

Further, from (29) we have

f

µ
pA

φ

¶
=

pA

φ (r − µ) − 1. (38)

At the optimal threshold (35) must be satisfied together with (36) - (38). Sub-
stituting (36) - (38) in (35) yields directly the equation (34).
Note that we did not need the condition (28) to get the result. The reason for

this can be explained as follows. Obviously, sufficiently close to the point pA the
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next innovation would move p directly across the investment threshold triggering
the investment. When the output price process is increasing and deterministic, then
once p climbs sufficiently close to pA for this to be the case, then it is sure that this
will be the case ever after. Thus, only the upper boundary conditions at pA are
relevant, and the problem is uniquely solved using them. On the contrary, if the
price process would be stochastic, price could always go down moving p away from
the threshold level, and thus the solution depends also on what happens at lower
values of p, which makes condition (28) relevant.

4.2 Special case B: deterministic technological progress

In this case, the intensity of innovation arrivals is increased (λ→∞) and the step
size is reduced (φ→ 1) so that the investment cost process approaches deterministic
exponential decline:

It = e
−γt, (39)

where the limiting processes λ → ∞ and φ → 1 are such that γ = λ (1− φ) is
fixed.
The solution to the problem can be derived directly from (23), which we rewrite

for convenience:19

1

2
σ2p2f 00 (p) + µpf 0 (p)− (r + λ) f (p) + λφf

µ
p

φ

¶
= 0. (40)

We consider what happens to the term λφf
³
p
φ

´
when λ → ∞ and φ → 1.

Expanding the term about the point p results that close to p, i.e. with φ close to 1
we have:

λφf

µ
p

φ

¶
= λφ

"
f (p) +

µ
p

φ
− p
¶
f 0 (p) +

1

2

µ
p

φ
− p
¶2
f 00 (p) + ...

#

= λφf (p) + pγf 0 (p) +
1

2
p2γ

µ
1

φ
− 1
¶
f 00 (p) + ..., (41)

where we have omitted terms of higher order than 2. As φ → 1, the term
1
2p
2γ
³
1
φ − 1

´
f 00 (p) vanishes (as do all the higher order terms, which can be easily

shown), and thus we find that λφf
³
p
φ

´
→ λφf (p)+pγf 0 (p) when φ→ 1, λ = γ

(1−φ) .
Substituting this in (40) and replacing λ (1− φ) by γ results in:

1

2
σ2p2f 00 (p) + (µ+ γ) pf 0 (p)− (r + γ) f (p) = 0. (42)

This is a standard second-order differential equation with the general solution:

f (p) = B1p
βB1 +B2p

βB2 , (43)

where B1 and B2 are constant parameters and
19Alternatively, the solution could be derived by directly using the deterministic process It =

I0eγt for the investment cost. Then the only source of uncertainty is the output price that follows
the geometric Brownian motion, and thus the techniques reviewed in Dixit and Pindyck (1994)
could be applied. In fact, the problem could be transformed to the same form as example 1 by
noting that the solution must be the same as if the investment cost is assumed constant, discount
factor is increased by γ, and the growth rate of output price, µ, is increased by γ. We derive the
solution by taking the limiting processes for the equation (23) in order to emphasize that we have
a special case of the problem presented in section 3.
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βB1 =
1

2
− (µ+ γ)

σ2
+

s·
(µ+ γ)

σ2
− 1
2

¸2
+
2 (r + γ)

σ2
> 1, (44)

βB2 =
1

2
− (µ+ γ)

σ2
−
s·

(µ+ γ)

σ2
− 1
2

¸2
+
2 (r + γ)

σ2
< 0. (45)

Condition (28) implies that B2 = 0. Conditions (26) and (27) are for (43):

B1
¡
pB
¢βB1 =

pB

(r − µ) − 1, (46)

B1β
B
1

¡
pB
¢βB1 −1 =

1

(r − µ) . (47)

These are easily solved for the two unknowns, B1 and pB :

B1 =
h
βB1 (r − µ)

i−βB1 ³
βB1 − 1

´(βB1 −1)
, (48)

pB =
βB1

βB1 − 1
(r − µ) , (49)

where βB1 is given by (44).

4.3 Special case C: full collapse of the investment cost (φ = 0)

In this case we assume that φ = 0. To still keep γ = λ (1− φ) fixed, we must
have λ = γ. This means that the probability of an innovation in the near future is
low, γdt within an infinitesimal time increment, but once an innovation occurs, the
investment becomes completely free. After such a break-through innovation it is
optimal to invest immediately, because the project does not cost anything, but will
provide a positive income stream forever. This means that the value of the option
to invest at cost zero is the same as the value of the project, that is, F (P, 0) = P

r−µ .
The expected change in the value of the investment, as given by equation (18) is
thus:

E (dF ) = µPFPdt+
1

2
σ2P 2FPPdt+ λ

·
P

r − µ − F (P, I)
¸
dt. (50)

Following the same steps as in section 3, i.e. substituting (50) in (17), dividing
by dt, arranging terms, using (13), (14), and (20) - (22), and finally dividing by I
results in:

1

2
σ2p2f 00 (p) + µpf 0 (p)− (r + γ) f (p) + γ

p

r − µ = 0. (51)

The general solution to (51) is:

f (p) = C1p
βC1 + C2p

βC2 +
γp

(r − µ) (r − µ+ γ)
, (52)

where C1 and C2 are constant parameters and
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βC1 =
1

2
− µ

σ2
+

s·
µ

σ2
− 1
2

¸2
+
2 (r + γ)

σ2
> 1, (53)

βC2 =
1

2
− µ

σ2
−
s·

µ

σ2
− 1
2

¸2
+
2 (r + γ)

σ2
< 0. (54)

Again, (28) implies that C2 = 0. The conditions (26) and (27) are for (52):

C1
¡
pC
¢βC1 + γpC

(r − µ) (r − µ+ γ)
=

pC

r − µ − 1, (55)

C1β
C
1

¡
pC
¢βC1 −1 + γ

(r − µ) (r − µ+ γ)
=

1

r − µ. (56)

These can be solved for the two unknowns, C1 and pC :

C1 =
h
βC1 (r − µ+ γ)

i−βC1 ³
βC1 − 1

´(βC1 −1)
, (57)

pC =
βC1

βC1 − 1
(r − µ+ γ) , (58)

where βC1 is given by (53).

4.4 Summing up

Special case A would suggest that the technological uncertainty simply does not
affect the optimal investment rule. However, if this was generally true, then the
investment thresholds pB and pC given by equations (49) and (58) should be equal.
Figure 1 shows these thresholds as functions of σ with parameter values r = 0.05,
µ = 0.01, and γ = 0.05. It can be seen that as the special case A indicates, these
coincide when σ = 0. However, as σ is increased, we have pC > pB. In other words,
when there is no revenue uncertainty, then the technological uncertainty does not
affect the optimal investment threshold, but when revenue uncertainty is added in
the model, the technological uncertainty also starts to affect making pB and pC

depart from each other.
This result can be explained by the discussion of section 2. When output price

is deterministic, we have the case where both state variables are non-decreasing
(P is deterministic and increasing, and I−1 is a non-decreasing stochastic process).
Therefore, the condition (5) must be satisfied at the boundary of the stopping region,
which implies that uncertainty does not affect the optimal investment threshold.
However, as revenue uncertainty is added in the model, then P is no longer non-
decreasing. Then (4) does not hold any longer, and thus we can not use (5) to
determine the stopping region. Then it is not surprising that uncertainty in P
affects the optimal stopping region, as confirmed by the fact that curves pB and pC

are increasing. It is perhaps more surprising that even uncertainty in I can not be
ignored any longer when P is stochastic, as confirmed by the fact that pB 6= pC .
As mentioned in section 3, the general model can not be solved analytically.

However, to complete the characterization of the solution, we state a proposition,
which implies that for intermediate values of uncertainty in the investment cost
(i.e., with φ ∈ (0, 1)), the threshold level for p is between the two special cases:
Proposition 2 Keeping γ = λ (1− φ) fixed, the optimal investment threshold p∗ is
decreasing in λ and φ, and thus increasing in the degree of technological uncertainty.
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Figure 1: Investment thresholds in special cases B and C as functions of σ.

Proof. In the appendix B.
Since at the lowest and highest possible values of φ (φ = 0 and φ→ 1) we have

p∗ = pB and p∗ = pC , respectively, it is clear that generally the optimal investment
threshold p∗ with φ ∈ (0, 1) is between pB and pC . Thus, the region between the
curves pB and pC in figure 1 represents the area of possible investment thresholds
at all such combinations of σ, λ, and φ that keep the expected paths of P and I
fixed.
For further illustration, we show how the value function f is affected by technological-

and revenue uncertainties. Figure 2 shows this function at four different combina-
tions of uncertainty related parameters σ, λ, and φ (other parameters are as in
figure 1: r = 0.05, µ = 0.01, and γ = 0.05):

1. f1 : σ = 0, λ→ 0, and φ→ 1,

2. f2 : σ = 0, λ = 0.05, and φ = 0,

3. f3 : σ = 0.2, λ→ 0, and φ→ 1,

4. f4 : σ = 0.2, λ = 0.05, and φ = 0.

The curves f1 and f3 are calculated from equation (43) and the curves f2 and
f4 from equation (52). We denote the corresponding investment thresholds by
p1, ..., p4. These four cases are also marked in figure 1 with numbers 1, ..., 4.
The curve f1 represents the value function when there is neither technological-

nor revenue uncertainty. The curve f2 shows what happens when revenue uncer-
tainty is maintained at zero level, but technological uncertainty is increased to the
maximum level. It can be seen that the value of the investment opportunity is in-
creased in the region where it is optimal to wait. In other words, the option value of
investment is increased by the increase of uncertainty, which is a standard result in
the real options theory. However, the shapes of the curves are such that they move
closer to each other when approaching the stopping region. Finally, they reach each
other at a common investment threshold. Both of these cases belong to the special
case A, so the investment threshold in both cases is given by (34), and has the value
p1 = p2 = 0.1.
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Figure 2: Value functions at different combinations of σ, λ, and φ.

On the contrary, the curve f3 represents the case where technological uncertainty
is absent, but instead, the revenue uncertainty is increased. Again, uncertainty
increases the option value of waiting. However, the shape of f3 differs from that of
f2. In contrast to the technological uncertainty, the extra value created by revenue
uncertainty increases when moving towards the stopping region. This implies that
the threshold p3 departs from p1 and p2. The exact value in this case is p3 = 0.129.
Finally, the curve f4 represents the case where both uncertainties are present.

As with f3, the revenue uncertainty has the effect that p4 is higher than p1 and
p2. However, now that it is combined with revenue uncertainty, the technological
uncertainty has an additional effect, which moves p4 even further up than p3, the
exact value being p4 = 0.15.
To sum up, the comparison of f1 and f2 reveals that in the absence of revenue

uncertainty, the degree of technological uncertainty increases the value of the in-
vestment option, but does not affect the optimal investment rule. However, when
combined with revenue uncertainty, also the optimal investment rule is affected, as
can be seen by comparing f3 and f4.

5 Conclusions
We have studied the timing of investment under uncertain technological progress
and uncertain revenue stream. The analysis was based on the theory of irreversible
investment under uncertainty. Most of the existing literature considers uncertainty
in input or output prices leaving technological uncertainty with little attention. Our
methodological contribution is to study the interaction of both of these uncertain-
ties.
We first characterized the general problem of investment in the optimal stop-

ping framework, and showed that if the underlying stochastic processes are non-
decreasing, an intuitive optimality condition similar to the first-order condition of
the corresponding deterministic problem can be used. This means that the optimal
investment rule depends only on the expected growth of the net present value of in-
vestment. We then presented a specific model where two uncertainties are present.
First, there is technological uncertainty, where innovations arrive at exponentially
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distributed random times reducing the cost of investment. Second, the revenue
stream that the investment would generate fluctuates according to the geometric
Brownian motion, making the present value of the investment a stochastic process.
When only the technological uncertainty is present, then an estimate on the ex-
pected path of future development is sufficient for the optimal investment timing
decision, as explained by the preceding analysis. However, we found that when
revenue uncertainty is included, then also the technological uncertainty starts to
affect the investment decision making the investor more hesitant to undertake the
project. Thus, it is the combination with the revenue uncertainty that makes the
technological uncertainty relevant for the decision maker.
For analytical convenience, we have used rather coarse stochastic processes to

characterize the output price movements and technological progress. For example,
the sizes of the investment cost reductions due to innovations would more real-
istically be random variables. However, the processes we used are sufficient for
our purpose, which is to characterize the effects of the two types of uncertainties.
They capture the main properties of revenue uncertainty and technological progress,
namely the revenue that moves randomly in both directions and technological un-
certainty that concerns the speed at which technology improves. Even with a more
refined model for these uncertainties, the qualitative nature of the results is likely
to remain the same. However, in a real decision making application, for example
in connection with a development of a given wind farm, a thorough identification
of the processes and estimation of the parameters would be necessary. The solving
would require more tailored numerical methods.
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A Appendix
Example 1 In this example, we review the basic model used by Dixit and Pindyck
(1994) in their book. A more refined version of the model was originally presented
in McDonald and Siegel (1986).
Assume that {Xt} is a one-dimensional process that follows the geometric Brown-

ian motion:
dX = αXdt+ σXdz, (59)

where α and σ are positive constants and dz is the standard Brownian mo-
tion increment. X represents the present value of the investment, and the cost
of investment is constant I. Thus, the net present value of the investment is
V (X) = X − I.20 In order to have a solution to the problem, it must be that
α is lower than the discount factor r (otherwise the value of the project grows so
fast that it is always optimal to wait).
Using Ito’s lemma, the expected value of the change in F (X) given (59) is:

E (dF (X)) = αXF 0 (X) dt+
1

2
σ2F 00 (X) dt,

where primes denote derivatives with respect to X. Substituting this in (2) and
dividing by dt yields the following differential equation:

1

2
σ2F 00 (X) + αXF 0 (X)− rF (X) = 0. (60)

Since we are in one dimension, the stopping region must be of the form Ω =
(X∗,∞), and the problem is to find the optimal investment threshold ∂Ω = X∗.
The condition (3) at the boundary X∗ is thus:

F (X∗) = X∗ − I. (61)

The smooth-pasting condition is:

F 0 (X∗) = 1. (62)

In addition, since 0 is a absorbing barrier for X, we must have the condition
that in the limit where X → 0, the value of the investment option goes to zero as
well. This means that the solution to (60) must be of the form:

F (X) = AXβ , (63)

where A is a constant to be determined and

β =
1

2
− α

σ2
+

sµ
α

σ2
− 1
2

¶2
+
2r

σ2
> 1. (64)

Using the conditions (61) and (62), the parameter A and the optimal investment
threshold can be easily solved. We get for the latter:

X∗ =
β

β − 1I. (65)

Since β > 1, X∗ exceeds I by a certain cap. This means that the investor should
wait until the present value of the project exceeds the cost of investment by a strictly
positive amount. It is easy to show that X∗ is increasing in σ. In other words, the
higher the uncertainty, the higher the net present value of the project must be to
make investing optimal.
20Our notation differs from Dixit and Pindyck (1994). They use V for the present value of the

investment and assume that it follows the geometric Brownian motion. The net present value in
their model is thus V − I, corresponding to our X − I.
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Example 2 The model of Farzin et al. (1998) considers the optimal timing of tech-
nology adoption. A firm uses an old production technology, but has an opportunity
to adopt a newer technology at a given cost. The technology evolves in time, and
the problem of the firm is to choose the optimal time to switch. In the basic version
of the model, only one switch is allowed. The technological progress is described
by the parameter θ, which is subject to jumps due to technological innovations that
arrive randomly. More precisely, θ follows a Poisson jump process so that within
an infinitesimal time increment dt, the change in θ is

dθ =

½
u with probability λdt,

0 with probability 1− λdt,
(66)

where u is a random variable uniformly distributed over the interval (0, u). Thus,
both the time and the extent of the next innovation are random.
The firm produces a homogeneous good according to the production function

h (v, θ) = θva, (67)

where v is a variable input and a is the constant output elasticity. The unit cost
of the variable input, w, and the output price, p, are assumed constant. Farzin et al.
derive the present value of the cash flows of a firm that produces using technology θ
forever:

g (θ) =
ϕθb

r
, (68)

where ϕ = (1− a) (a/w)a/(1−a) p1/(1−a) and b = 1/ (1− a) > 1 are constants
and r is the discount factor.
The firm is initially using technology θ0 and has an opportunity to make a single

switch to a newer technology at a cost I. If the level of technology is θ when the

firm switches, the value of the switch is thus ϕθb

r − ϕθb0
r . To put the problem in

our investment framework, the firm has thus an option to carry out an irreversible
investment whose net present value V depends on the stochastic variable θ as given
below:

V (θ) =
ϕθb

r
− ϕθb0

r
− I. (69)

Obviously, V is an increasing function of θ, and θ is a time-homogenous Markov
process. Thus, we know that the optimal solution to the problem must be to invest
at the first such moment when θ exceeds some threshold value θ∗. Moreover, since
θ is a non-decreasing process, we can apply the condition (5) to find the optimal θ∗.
In the present case, (5) can be written:

rV (θ∗) dt = E (dV (θ∗)) . (70)

Since an innovation occurs at probability λdt within an infinitesimal dt, the expected
change in V given the current θ is:

E (dV (θ)) = λdt

 uZ
0

Ã
ϕ (θ + u)

b

r
− ϕθb0

r
− I

!
1

u
du−

Ã
ϕθb

r
− ϕθb0

r
− I

!
= λdt

"
ϕ

ur

Ã
(θ + u)1+b − θ1+b

1 + b

!
− ϕθb

r

#
. (71)

Substituting this in (70) and simplifying yields:

λϕ

ur

Ã
(θ∗ + u)1+b − (θ∗)1+b

1 + b

!
− (r + λ)ϕ

r
(θ∗)b + ϕθb0 + rI = 0. (72)
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This is exactly the same as equation (17) in Farzin et al. We have thus shown
that their result is obtained in a simple and intuitive way by using condition (5).
The optimal investment threshold is obtained by solving (72) numerically.

Example 3 (Example 1 continued) We try to apply the result (5) in example
1, i.e. invest at the moment when:

rV (X∗) dt = E (dV (X∗)) . (73)

Since rV (X) dt = r (X − I) dt and E (dV (X))) = αXdt, we find that (73)
implies:

X∗ =
r

r − α
I. (74)

It can be shown that β
β−1 >

r
r−α when r > α, thus (74) is clearly wrong. In

fact, (74) would be the correct investment threshold if σ = 0, i.e., the process for X
would be deterministic. The reason why the result (5) does not work for the present
case is that the geometric Brownian motion fluctuates both up and down. Thus, (4)
does not hold at the boundary of the stopping region, and therefore (73) can not be
used to find the correct investment threshold.
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B Appendix
Proof of proposition 1. We have to show that the optimal stopping region Ω of
the problem (12) must be of the form Ω =

©
(P, I)

¯̄
P
I ≥ p∗

ª
where p∗ is a constant.

The proof follows a similar proof in McDonald and Siegel (1986).
Let τ∗ be the stopping time that maximizes the expression

E

·µ
P

r − µ − I
¶
e−rτ

¸
, (75)

where P and I follow (9) and (6) respectively. Let Ω be the corresponding
stopping region. Write P 0 = kP , I 0 = kI (k > 0), and consider problem to choose
τ 0 to maximize

E

·µ
P 0

r − µ − I
0
¶
e−rτ

¸
= kE

·µ
P

r − µ − I
¶
e−rτ

¸
(76)

subject to the appropriate stochastic processes for P 0 and I 0. It is easy to confirm
that the processes are exactly the same as those for P and I (properties of the
geometric Brownian motion and Poisson jump processes). Therefore, the problem
is the same as that in (75), so the solution stopping region is again Ω. Because the
expression in (76) is just the expression (75) multiplied by k, the optimal stopping
times must be equal, i.e. τ 0 = τ∗. So, in every realization of P and I, the pairs
(P, I) and (kP, kI) hit Ω at the same time. Since k is an arbitrary positive constant,
it must be that the boundary of Ω is a ray originating from origin (it will be shown
in the next step that there are not many such rays). We denote the ratio of PI at
this stopping boundary by p∗.
Assume that the boundary Ω consists of many rays. Then there must be a

p0 = P 0
I0 > p

∗ = P∗
I∗ where it is not optimal to invest. Then it must be that

P∗
r−µ−I∗ =

F (P ∗, I∗), but P 0
r−µ − I 0 < F (P 0, I 0). These can be written as p∗

r−µ − 1 = F (p∗, 1)
and p0

r−µ − 1 < F (p0, 1). Multiplying the second by p∗
p0 gets

p∗
r−µ − p∗

p0 < F
³
p∗, p

∗
p0

´
,

which means that it is not optimal to pay p∗
p0 to get the flow

p∗
r−µ . However, according

to equation p∗
r−µ − 1 = F (p∗, 1), it is optimal to pay 1 to get the flow p∗

r−µ . This is

contradicting, because p∗
p0 < 1. Thus, the unique solution to the problem must be

to invest whenever p ∈ [p∗,∞), and to wait otherwise.
Proof of proposition 2. We have to show that p∗ is decreasing in φ (when

keeping γ constant). This would imply that the optimal investment threshold p∗

with φ ∈ (0, 1) is between pB and pC .
We start by picking an arbitrary φ ∈ (0, 1). Let p∗ be the corresponding optimal

investment threshold, and f is the corresponding value function. Function f thus
satisfies the differential equation (23), which we rewrite with substitution λ = γ

1−φ :

1

2
σ2p2f 00 (p) + µpf 0 (p)− rf (p)− γ

1− φ
f (p) +

γφ

1− φ
f

µ
p

φ

¶
= 0. (77)

In addition, f satisfies:

f (p∗) =
p∗

r − µ − 1, (78)

f 0 (p∗) =
1

r − µ, (79)

f

µ
p∗

φ

¶
=

p∗

φ (r − µ) − 1, (80)

lim
p→0

f (p) = 0. (81)
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Since (77) holds for all p ≤ p∗, also the following two equations that are obtained
by differentiating it once and twice, respectively, hold when p < p∗:

0 =
1

2
σ2p2f (3) (p) +

¡
σ2 + µ

¢
pf 00 (p)

+

µ
γ

1− φ
+ r − µ

¶
f 0 (p) +

γ

1− φ
f 0
µ
p

φ

¶
, (82)

0 =
1

2
σ2p2f (4) (p) +

¡
2σ2 + µ

¢
pf (3) (p)

+
¡
σ2 − r + 2µ¢ f 00 (p)− γ

1− φ

µ
f 00 (p)− 1

φ
f 00
µ
p

φ

¶¶
. (83)

Further, (82) and (83) must also hold at p = p∗, when we define f 00 (p∗), f (3) (p∗),
and f (4) (p∗) to be the left-hand side derivatives. Therefore, we adopt the defini-
tions:

f (i) (p∗) ≡ lim
p→(p∗)−

f (i) (p) , i = 2, 3, 4. (84)

Substituting (78)-(80) in (77) and simplifying, we find that at p = p∗:

f 00 (p∗) =
p∗ − r − γ
1
2σ

2 (p∗)2
. (85)

Similarly, substituting (78)-(80) and (85) in (82), we find that

f (3) (p∗) =

¡
σ2 + µ

¢
p∗ (r + γ − p∗) + 1
1
4σ

4 (p∗)4
. (86)

Finally, substituting (78)-(80), (85), and (86) in (82), we get:

f (4) (p∗) =
1

1
2σ

2 (p∗)2

(
− ¡2σ2 + µ¢ p∗Ã¡σ2 + µ¢ p∗ (r + γ − p∗) + 1

1
4σ

4 (p∗)4

!

− ¡σ2 − r + 2µ¢Ãp∗ − r − γ
1
2σ

2 (p∗)2

!
+

γ

1− φ

Ã
p∗ − r − γ
1
2σ

2 (p∗)2

!)
. (87)

Now, take φ ∈ (φ, 1] and consider the same threshold level p∗ as before. Denote
by f a function that satisfies (78)-(80) at p = p∗, and (77) for p ≤ p∗, but with φ
replaced by φ.
Since f satisfies (78) and (79), we have f (p∗) = f (p∗) and f

0
(p∗) = f 0 (p∗). We

can now derive the expressions for f
00
(p∗), f

(3)
(p∗), and f

(4)
(p∗) in the same way as

for f . This leads to the same expressions as (85), (86), and (87), but with φ replaced
by φ. Since (85) and (86) do not depend on φ, we find that f

00
(p∗) = f 00 (p∗), and

f
(3)
(p∗) = f (3) (p∗). However, (87) depends on φ, and it is easy to confirm that

f
(4)
(p∗) > f (4) (p∗).
Consider the values of functions f and f just below p∗, i.e., fix p− = p∗ − ε,

where ε is a very small positive number. When p− is sufficiently close to p∗, we get
the value f (p−) expanding f about p∗:

f
¡
p−
¢
= f (p∗) +

¡
p− − p∗¢ f 0 (p∗) + 1

2!

¡
p− − p∗¢2 f 00 (p∗)

+
1

3!

¡
p− − p∗¢3 f (3) (p∗) + 1

4!

¡
p− − p∗¢4 f (4) (p∗) +O h¡p− − p∗¢5i ,(88)
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where O
h
(p− − p∗)5

i
represents terms of order 5 and higher. A similar expres-

sion can be written for f (p−). Consider then the difference f (p−)− f (p−). Since
f
(i)
(p∗) = f (i) (p∗) for i = 0, 1, 2, 3, we find that

f
¡
p−
¢− f ¡p−¢ = 1

4!

¡
p− − p∗¢4 ³f (4) (p∗)− f (4) (p∗)´+O h¡p− − p∗¢5i . (89)

Since f
(4)
(p∗) > f (4) (p∗), we have confirmed that f (p−) > f (p−) when p−

is sufficiently close to p∗. Thus, we know that f (p∗) = f (p∗), but just below p∗,
f (p) > f (p).
The next step is to show that functions f and f do not cross each other anywhere

below p∗. Note that at p∗, all the derivatives of f and f up to the third derivative are
equal, but f

(4)
(p∗) > f (4) (p∗). This means that just below p∗, f

(3)
(p) < f (3) (p),

f
00
(p) > f 00 (p), f

0
(p) < f 0 (p), and f (p) > f (p). Therefore, if ever f and f are

going to cross each other below p∗, then moving downwards from p∗, there must
be some point ep where f 00 (ep) = f 00 (ep), while f 00 (p) > f 00 (p), f

0
(p) < f 0 (p), and

f (p) > f (p) for all ep < p < p∗.
To show that this is not possible, take an arbitrary ep < p∗, and assume that

f
00
(p) > f 00 (p), f

0
(p) < f 0 (p) and f (p) > f (p) for all ep < p < p∗. Equation (77)

must naturally be satisfied at this point both for f and f :

1

2
σ2ep2f 00 (ep) + µepf 0 (p)− rf (ep)− γ

1− φ
f (ep) + γφ

1− φ
f

µ ep
φ

¶
= 0, (90)

1

2
σ2ep2f 00 (ep) + µepf 0 (ep)− rf (ep)− γ

1− φ
f (ep) + γφ

1− φ
f

µ ep
φ

¶
= 0. (91)

Subtracting these from each other we get:

f
00
(ep)− f 00 (ep) =

µep³f 0 (ep)− f 0 (ep)´+ r ¡f (ep)− f (ep)¢
1
2σ

2ep2 +h
γ

1−φf (ep)− γφ

1−φf
³ ep
φ

´
− γ

1−φf (ep) + γφ
1−φf

³ ep
φ

´i
1
2σ

2ep2 . (92)

The first term of (92) is clearly positive. Denote the term in brackets by W . It
can be written as:

W =
γ
h
(1− φ) f (ep)− (1− φ)φf

³ ep
φ

´
− ¡1− φ

¢
f (ep) + ¡1− φ

¢
φf
³ ep
φ

´i
¡
1− φ

¢
(1− φ)

. (93)

Consider then the term φf
³ ep
φ

´
. This can be written as:

φf

µ ep
φ

¶
= φ

·
f (ep) +µ ep

φ
− ep¶ f 0 (ξ)¸ = φf (ep) + (1− φ) epf 0 (ξ) (94)

for some ξ ∈
³ep, epφ´. Similarly, we can write

φf

µ ep
φ

¶
= φf (ep) + ¡1− φ

¢ epf 0 ¡ξ¢ (95)
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for some ξ ∈
³ep, ep

φ

´
. Because f

0
(p) < f 0 (p) for all ep < p < p∗ and f 0 (p) = f 0 (p)

for p ≥ p∗, it must be that f 0 (ξ) > f
0 ¡
ξ
¢
. Substituting (94) and (95) in (93) we

get:

W =
γ¡

1− φ
¢
(1− φ)

h
(1− φ)

³
f (ep)− φf (ep)− ¡1− φ

¢ epf 0 ¡ξ¢´
− ¡1− φ

¢
(f (ep)− φf (ep)− (1− φ) epf 0 (ξ))¤

=
γ
h
(1− φ)

¡
1− φ

¢ ³
f (ep)− epf 0 ¡ξ¢´− (1− φ)

¡
1− φ

¢
(f (ep)− epf 0 (ξ))i¡

1− φ
¢
(1− φ)

= γ
h
f (ep)− f (ep) + ep³f 0 (ξ)− f 0 ¡ξ¢´i . (96)

Since f (ep) > f (ep) and f 0 (ξ) > f 0 ¡ξ¢, we have W > 0, and thus from (92) we

get that f
00
(ep) > f 00 (ep). This means that there can not be such ep < p∗ where the

second derivatives cross each other given that f
0
(p) < f 0 (p), and f (p) > f (p) for

all ep < p < p∗. This means that f can not cross f below p∗, and since f (p) > f (p)
with p sufficiently close to p∗, it must be that f (p) > f (p) everywhere below p∗.
We defined f (p) as a function that satisfies (78)-(80) at p = p∗, and (77) for

p < p∗, but with φ replaced by φ. Since all these conditions are satisfied, the level
p = p∗ would be the optimal investment threshold with φ if also the condition (81)
were satisfied. However, we have just shown that f (p) > f (p) everywhere below
p∗, and moreover, the derivatives up to the second derivative are such that they
“move f (p) and f (p)” away from each other. This means that the condition (81)
can not be satisfied by f . Instead, we have

lim
p→0

f (p) > 0. (97)

This means that p∗ would be the correct investment threshold with φ if the in-
vestment option entailed a positive payoff in the case where price would be absorbed
to zero. Since in reality the value of the option should be zero in that case, f (p) is
a too optimistic value for the investment option. In reality the value of the option
is lower, which means that it is optimal to give it up in return of the project earlier
than at p∗. The correct investment threshold p∗ with φ > φ is therefore p∗ < p∗.
Thus, we have shown that the greater the value of φ, the lower the investment

threshold (while keeping γ fixed).
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