
August 3, 2002 8:52 WSPC/151-IGTR 00060

International Game Theory Review, Vol. 4, No. 2 (2002) 127–140
c© World Scientific Publishing Company

A GAME MODEL OF IRREVERSIBLE INVESTMENT

UNDER UNCERTAINTY

PAULI MURTO

Systems Analysis Laboratory, Helsinki University of Technology,
P.O. Box 1100, 02015 HUT, Finland

pauli.murto@hut.fi

JUSSI KEPPO

Department of Industrial and Operations Engineering, University of Michigan,
1205 Beal Avenue, Ann Arbor, MI, 48109-2117, USA

keppo@umich.edu

Most of the literature on real options considers the optimal decision of a firm in isolation
from competitors. In reality, however, the actions of competing firms often affect each
other’s investment opportunities. We develop a game model where many firms compete
for a single investment opportunity. When one of the firms triggers the investment the
opportunity is completely lost for the other firms. The value of the project for the firms is
assumed to follow a geometric Brownian motion. The model combines game theory and
the theory of irreversible investment under uncertainty. We characterize the resulting
Nash equilibrium under different assumptions on the information that the firms have
about each other’s valuations for the project. As an example, we present a case of
building a telecommunications network.
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1. Introduction

In recent years, the literature on real options has improved considerably our un-

derstanding of the irreversible capital investment problems under uncertainty. This

literature stresses the similarity between a financial call option and an opportunity

to invest in a real asset. The investment problem can be seen as a typical valuation

problem of an American option in which the theory of optimal stopping times [e.g.,

Karatzas and Shreve (1988)] is used. An excellent survey of the main theory is given

in Dixit and Pindyck (1994). Important contributions include, e.g., McDonald and

Siegel (1986), Pindyck (1988) and Dixit (1995). Another survey on different models

is Trigeorgis (1996).

In a market with no large investors, the value of the real option is equal to the

net present value of the investment after all costs plus the time value of the real

option. The entry time is selected so that the value of the option is maximized. In

other words, investment is made at such a moment when the time value is zero and
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net present value is strictly positive. However, in the case of large investors [see e.g.,

Keppo and Lu (1999)] the problem is much more complicated because we have to

consider the impact of the investments on the net present values. This leads to an

investment game between the firms.

Most of the models presented in the literature do not take into account the

competitive aspects. This is often a serious limitation if the purpose of the modeling

is to get more understanding on the functioning of some industry, but also if the

purpose of the modeling is to help decision makers make better investment decisions.

Del Sol and Ghemawat (1999) argue that typical option valuation models tend to

recommend waiting too long before investing, because they fail to recognize the

competition for a limited number of business opportunities.

The existing literature that takes competitive aspects into account can be di-

vided into two classes. First, there are papers, which study the market equilibrium

under the assumption of perfect competition and free entry. Lucas and Prescott

(1971) showed the social optimality of the equilibrium in a discrete-time Markov

chain model. Leahy (1993) discovered that the equilibrium entry time under free

entry is the same as the optimal entry time of a myopic firm who ignores future entry

by competitors. Baldursson and Karatzas (1996) generalize the result utilizing sin-

gular stochastic control theory. Grenadier (1999) enriches the analyses by including

construction delays. An interesting application is developed in Tvedt (1999).

A second and more recent stream of literature takes the game theoretic ap-

proach. In these models, the number of firms is exogenous and therefore independent

on the equilibrium result. Some of the models are set in a two period framework,

e.g., Kulatilaka and Perotti (1998), which analyze the strategic interaction of invest-

ments that induce cost advantage over rivals. In continuous time, Williams (1993)

and Baldursson (1998) are examples of models where firms can adjust capacity con-

tinuously. On the other hand, Grenadier (1996), Lambrect (1999) and Joaquin and

Butler (1999) present models where competing firms have opportunities to invest

in discrete investment projects and where the game is played on the timing of these

investments.

This paper adds to this second stream of literature. We analyze a particular

kind of setting, where the investment of a firm completely eliminates corresponding

investment opportunities of the other firms. The agents must first pay the fixed sunk

cost before the new investment can start. Thus, at the beginning of the optimization

period the agents hold American options and, therefore, we employ the optimal

stopping theory. However, the strategic effects complicate the situation. Even if

the model itself is dynamic, the strategic interaction between the players results in

a one-shot game in investment strategies. The equilibrium strategies of the firms

depend crucially on the information that the firms possess about the valuation

of the business opportunity by their competitors. We find the Nash equilibrium

under different assumptions on the information structure. Under the assumption

that firms do not know each other’s valuation for the project, we propose that firms

use simple assessments on the likelihood that their competitors will invest within
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the next “time instant.” We characterize the equilibrium that results from this type

of assessments.

As an example of the model we present a case of building a new telecommunica-

tions network. If we assume that the new network will not affect the business oppor-

tunities of the competitors, the optimal investment strategy follows from standard

real option theory and can be derived separately for each firm. Telecommunications

investments in the case of a single large agent are studied in Keppo (2000). Large

investments of the kind usually reduce the investment opportunities of the competi-

tors. In this paper we have the strongest possible assumption: the firms compete

on a single opportunity and only one of them gets the project. We demonstrate

how the assumptions on the symmetry properties of the firms and information they

have on each other’s valuations for the project strongly affect the moment when

the investment is made.

The paper is structured as follows. In Sec. 2 we present the basic notation

and main assumptions behind our model. In the next two sections we analyze the

behavior of the players under different assumptions on the information that they

have. In Sec. 3 it is assumed that the players have full information on their competi-

tors’ valuation of the investment project. This results in a very intuitive equilibrium.

In Sec. 4 players are assumed to have no information on their competitors’ values.

The analysis then requires additional assumptions on their behavior. The existence

of the resulting equilibrium is stated and its qualitative nature is discussed. The

model, as presented in Secs. 2–4, is quite general. Therefore, in Sec. 5 we apply

the model in a specific example of investing in a telecommunications network and

finally Sec. 6 concludes.

2. Model and Assumptions

We consider a continuous time model in an infinite horizon. We assume that there

are n competing firms (players), each of which has an opportunity to invest in a

single discrete project. Firms have different valuations for the project and we assume

that the value of the project for each firm follows a geometric Brownian motion.

The firms monitor the evolution of the project value and based on this they are free

to carry out the investment at any moment. Players understand that the investment

is irreversible, i.e., they cannot get the money they sunk in it back in case the value

process turns unfavorable. To simplify the matters, we also assume that the firms

are risk-neutral.

Let us first consider a single firm in isolation from the others. Then the firm

has a monopoly right to the project. The analysis in this case is standard, and

can be found, e.g., in McDonald and Siegel (1986) and Dixit and Pindcyk (1994).

The following assumption summarizes this setting, where the effect of the players’

actions on each other is not yet considered.

Assumption 2.1. As long as the competitors of firm i ∈ {1, . . . , n} are not

considered, the expected present value of the project for i follows a geometric
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Brownian motion

dVi = αiVidt+ σiVidzi (2.1)

where αi and σi are constants and zi is a standard Brownian motion.

Since the value Vi evolves in time, we call it the project value process. If the

firm i triggers the investment at time t, it receives the payoff Vi(t) and gives up

the fixed cost Ii. The investment is irreversible, the firms are risk-neutral, and the

risk-free interest rate is constant r.

It is well known that if we do not take the competitors’ actions into account,

the optimal investment policy of firm i ∈ {1, . . . , n} is to invest when the project

value Vi hits a certain trigger level for the first time. This trigger level, VMi (M for

monopoly), is given by

VMi =
βMi

βMi − 1
Ii , (2.2)

where

βMi =
1

2
− (r − δi)

σ2
+

√[
(r − δi)
σ2

− 1

2

]2

+
2r

σ2

and δi = r− αi [see e.g., Dixit and Pindyck (1994)]. Since βMi > 1, the investment

rule (2.2) says that the firm should not invest before the value of the project has

exceeded Ii by a certain gap. This is a fundamental result of irreversible investment

under uncertainty. The reason for this is that the opportunity to invest has a certain

value, which the firm has to give up when investing. In other words, the firm loses

the freedom between the two choices (invest and not to invest) when it carries out

the irreversible investment. When this option value of the investment opportunity

is added into the analyses, the firm is more reluctant to invest.

To finish the description of our setting we now introduce the interaction of

the firms. We assume that the investment project under consideration is unique

in the sense that only one of the firms can invest in it. In other words, the value

of the project for firm i behaves as given by Assumption 2.1 as long as no one has

invested in it, but as soon as one of the firms triggers the investment, it jumps to

zero for all firms except the one who invests. This is explicitly written in the next

assumption.

Assumption 2.2. At time t when one of the firms triggers its investment, the

investment opportunity is completely lost for all the other firms.

Assumption 2.2 means that in fear of losing the project, firms have a strong

incentive to invest before the others as long as their payoff from the investment is

positive. Intuitively, it is clear that Assumption 2.2 forces the firms to invest earlier

than in the monopoly solution given by Eq. (2.2). However, the optimal investment

rules depend on the information structure of the model. In the following sections we

analyze the equilibrium under two different assumptions for the information that
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firms have about each other’s project values: in Sec. 3 we assume that the firms

know exactly the current project values of their competitors, while in Sec. 4 we

assume that this information is not available.

It should be emphasized here that we do not want to specify at this stage whether

the project value processes are correlated with each other or not. As will be pointed

out more clearly in the following sections, our model does not take this correlation

into account explicitly. In the case of perfect information, the possible correlation

effects do not have any effect on the Nash equilibrium since the strategies of the

players are functions of the observable project value processes. On the other hand,

in the case of no information on competitors’ values, it is assumed that players

cannot measure the possible correlations and, therefore, they have no means to

calculate the exact probability distributions of their competitors’ instantaneous

project values. Instead, we assume that firms arrive at simple estimates of “hazard

rates” for their competitors’ investment behavior. In doing so the firms may be

assumed to take implicitly the estimated correlation effects into account.

3. Equilibrium with Full Information on Competitors’

Project Values

When we consider a single firm in isolation from others, the strategy as given

by Eq. (2.2) is simply a trigger level for the value process. In other words, it is a

decision rule defining when the firm invests as a function of the value of the process.

When we consider a game setting with many firms competing for the same project,

we have to define the strategies of the firms as functions of all information they

have on the state of the game. Strategies of the firms are such decision rules that

define the evolution of the game. Throughout this paper we restrict the analysis

to deterministic or pure strategies, which means that the firms are not allowed to

randomize their actions.

In this section we assume that each firm knows exactly the current project values

of its competitors. This results in strategies, which are functions of project values

of all players.

Definition 3.1. The strategy of player i ∈ {1, . . . , n} in the case of full information

on competitors’ project values is a mapping Γi : Rn
+ → {0, 1}, where 0 means “do

not invest” and 1 means “invest.” In other words, given the current project values

of all players the strategy of player i ∈ {1, . . . , n} tells whether she invests or not if

no one has invested so far.

Given the strategies for all players, the game is played by letting the project

values evolve according to (2.1) until for one of the firms, say firm i, Γi(V1, . . . , Vn) =

1 for the first time. Then the game ends and firm i gets payoff Vi−Ii and others get

zero. There is, however, a technical detail that has to be taken into account. It is

possible that the strategies determine two or more players to invest simultaneously.

It cannot be allowed, because the model setting rests on the assumption that only
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one of the firms gets the project. For this reason, we add the following assumption

without any loss of insight.

Assumption 3.1. If two or more firms try to invest simultaneously according to

their strategies then the one with the highest value Vi gets the project. If there are

two or more firms with the same project values who try to invest simultaneously,

then the one who gets the project is drawn randomly using an even distribution.

To start with, consider a special case where the value processes of all players are

fully correlated and that Vi = Vj , Ii = Ij , ∀ i, j. It turns out that in this symmetric

situation Nash equilibrium strategies have to be symmetric, i.e., if one of the firms

decides to invest at some moment, then all the others decide the same thing. In

this case we can also express the strategies in an equivalent but simpler form by

defining the strategy of firm i to be the lowest level of project value, where i is

willing to invest. In a case of symmetric strategies, this trigger level is the same for

all firms and we can denote it V N (N for Nash). Now we can state the following

proposition.

Proposition 3.1. When Vi = V, Ii = I, ∀ i, the unique Nash equilibrium is for all

firms to adopt strategies

ΓNi (V ) =

{
0, if V < I

1, if V ≥ I
(3.1)

or equivalently V N = I.

Proof. The strategies given in the proposition define a Nash equilibrium, because

the expected payoff for each firm is zero and it is easy to check that no firm can

increase that by changing its strategy. If firm i, for example, increases its trigger

level, then the payoff remains zero the only difference being that then the firm

will surely not get the project. If firm i lowers its trigger level, then its payoff

gets negative, because then she will surely get the project but its value is less

than the investment cost. To show that the equilibrium is unique, assume first that

ΓNi (V ) = 1 for some V < I. Then the expected payoff for i is negative, and i can

always improve its payoff by choosing ΓNi (V ) = 0 for all V < I. On the other hand,

assume that V ≥ I and no one has invested so far. Then, firm i can get a positive

expected payoff by choosing ΓNi (V ) = 1, whereas by choosing ΓNi (V ) = 0, firm i

gets payoff zero if at least one of the other firms have ΓNj (V ) = 1. Therefore, it is

clear that in equilibrium every firm must have ΓNi (V ) = 1 when V ≥ I. Therefore,

the equilibrium given in (3.1) is unique.

Notice that in the equilibrium firms are in fact indifferent between getting the

project and losing it to a competitor. This means that competition completely

eliminates expected profits. This is the result of their aggressive non-cooperative

behavior. If the firms cannot cooperatively coordinate their actions, as we assume

in this paper, no more than two firms are required to ruin all profits.
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Next, let us assume that the value of the project and the investment cost are not

necessarily the same for all firms. Then, one lucky firm can make positive profits if

its project value crosses the level Ii before the others.

Proposition 3.2. The unique Nash equilibrium strategies in the case of full infor-

mation on competitors’ project values are given by

ΓNi (V1, . . . , Vn) =



0, if Vi < Ii

0, if Ii ≤ Vi < VMi and Vj < Ij ∀ j 6= i

1, if Ii ≤ Vi < VMi and Vj ≥ Ij for some j 6= i

1, if Vi ≥ VMi

. (3.2)

Proof. Equation (3.2) is got by combining the monopoly strategies VMi and Nash

strategies V N of Proposition 3.1. That the strategies indeed make a unique Nash

equilibrium can be shown in the same way as in Proposition 3.1.

Proposition 3.2 means that when for the first time one of the firms, say firm i,

crosses the level where its expected payoff from investment gets positive (Vi = Ii),

the firm does not have to invest yet if no other firm has reached the corresponding

level. Firm i does not have to fear preemption, because it would be unprofitable

for its competitors. However, when any other firm reaches the level where expected

payoff from investment ceases to be negative, the preemption becomes possible and

the non-cooperative competition forces the firm i to invest before this happens.

According to Assumption 3.1 she can do this at the exact moment when the pre-

emption becomes rational for a competitor. On the other hand, if firm i reaches

the level VMi it invests in any case, because that is the level where it would invest

if it had no competitors. Notice that the equilibrium given in Proposition 3.1 is a

special case of Proposition 3.2.

The results given in this section are straightforward. A more complicated setting

results when players do not know each other’s value functions. This will be analyzed

in the next section.

4. Equilibrium with No Information on Competitors’

Project Values

In this section we give up the assumption of full information that was used in the

previous section. We adopt a completely opposite view and assume that the firms

do not have any information on each other’s project values, not even on their initial

values. As the firms cannot observe the project values of their competitors, their

strategies are investment trigger levels V ∗i , which do not depend on Vj , where j 6= i.

Definition 4.1. The strategy of player i ∈ {1, . . . , n} in case of no information

on competitors’ project values is a trigger level V ∗i ∈ R+. This strategy gives the

lowest project value, where firm i invests.
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Given the strategies for all players, the game is again played by letting the

project values evolve according to (2.1) until for one of the firms, say firm i, Vi = V ∗i
for the first time. Then firm i invests and the game ends. Firm i gets payoff Vi− Ii
and others get zero.

The lower the trigger level is, the sooner it is reached. Therefore, the firms un-

derstand that with a given strategy, their competitors’ strategies directly affect the

likelihood that they will get the project, i.e., being the first one to reach their trigger

level. The possible correlation effects between the processes are now more relevant.

If firm i, for example, values the project at Vi > Ii, then in deciding whether to

invest or not she has to estimate the likelihood that one of her competitors will

invest within the next “time instant.” If the processes are strongly correlated, then

a high Vi implies a high probability for a high value for competitors, and this in

turn would imply a high probability of investment by competitors.

The strict analysis of the equilibrium with given correlation coefficients between

the value processes would be extremely difficult. Also, it seems perhaps unrealistic

that firms would know exactly all correlation effects and would be able to arrive

at correct probability distributions on competitors’ values given their own project

value. Instead, we take an approach where we assume a certain kind of assessment

of the firms concerning their competitors’ likelihood to invest. Namely, the firms

are assumed to model their competitors’ investment likelihood by a “hazard rate,”

which multiplied by the length of a very short time interval gives the probability of

investment within this interval.

However, it would be simplistic to assume that firms just assume a fixed hazard

rate of investment for their competitors. Then the firms would ignore the effect of

their competitors’ strategies on their own optimal strategies, and thus the situation

could be modeled using a simple optimization model. Instead, we assume that the

firms understand that the probability that a competitor j invests during the next

time interval depends on its trigger level V ∗j . This is taken into account by assigning

firms functions that reflect their estimates of their competitors’ investment hazard

rate as a function of the trigger levels. The lower the trigger strategy the sooner it

is reached and thus the higher the hazard rate must be.

Of course, it would be possible that firms would model the hazard rates as

functions of time. However, as we assume that firms do not know even the initial

values of their competitors’ value processes, it is more realistic to assume them to

be constant in time. What we assume seems the most reasonable way for a firm to

assess the hazard rates of its competitors’ investments.

Summarizing the preceding discussion, we make the following assumption.

Assumption 4.1. The firm i ∈ {1, . . . , n} models the hazard rate of investment by

a competitor j ∈ {1, . . . , n} − {i} as a continuous, positive and decreasing function

λj(V ∗j ) defined for all V ∗j ≥ 0.

It should be stressed that we do not assume that firms announce to each other

their trigger levels. Instead we require that firms are able to assess the hazard rate
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as a function of this level. The equilibrium is then based on the assumption that

firms act rationally and also except their competitors to behave rationally.

To start the analysis, let us consider a situation where the project of firm i ∈
{1, . . . , n} follows Assumption 2.1, but the firm faces a constant hazard rate λ of

losing the whole investment opportunity. The project value then follows equation

dVi = αiVidt+ σiVidzi − Vidq , (4.1)

where

dq =

{
1 with probability λdt

0 with probability 1− λdt

The optimal investment trigger is [see, e.g., Dixit and Pindyck (1994)]

V ∗i =
βi

βi − 1
Ii , (4.2)

where

βi =
1

2
− (r − δi)

σ2
+

√[
(r − δi)
σ2

− 1

2

]2

+
2(r + λ)

σ2
.

By inspecting the formulae, it is easy to conclude that βi is always greater

than one and increasing in λ. Therefore, the investment trigger is continuous and

decreasing in λ. This means that the higher the probability that during the next

short time interval the whole project is lost, the lower the project value required to

trigger the investment. That is, the firm does not “dare” to wait for as high payoff

to invest when it may lose the project altogether before that level is reached.

To relate this result to our model, adopt the Assumption 2.2 that firm i ∈
{1, . . . , n} models the investment hazard rates for all firms j ∈ {1, . . . , n} − {i}
as constants dependent on the trigger levels V ∗j . If all competitors of firm i have

fixed strategies, then the hazard rate of losing the investment opportunity is λ =∑
j 6=i λ

j(V ∗j ), and using this the optimal trigger level is given by Eq. (4.2).

However, we have to allow all firms to optimize their trigger levels with respect

to their beliefs, which in turn affect others’ trigger levels. This leads us to the Nash

equilibrium for the trigger levels of all firms. The following proposition states that

there is such an equilibrium.

Proposition 4.1. Given Assumptions 2.1, 2.2, and 4.1, there exists a Nash equi-

librium V N1 , . . . , V Nn for the trigger level strategies. The sufficient and necessary

condition for V N1 , . . . , V Nn to be the equilibrium is that

V Ni =
βNi

βNi − 1
Ii ∀ i ∈ {1, . . . , n} , (4.3)

where

βNi =
1

2
− (r − δi)

σ2
+

√[
(r − δi)
σ2

− 1

2

]2

+
2
[
r +

∑
j 6=i λ

j(V Nj )
]

σ2
.
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Proof. Equation (4.2) gives the form of the optimal strategy for i. Thus, Eq. (4.3)

gives the optimal reaction of i to its competitors actions, and it must be satisfied

for all i if all firms have simultaneously optimal reactions for each other’s strategies.

Therefore, it is a necessary condition for the equilibrium. Clearly, the condition is

also sufficient, because if (4.3) is satisfied, then all firms have optimal responses to

each other’s strategies. The existence of the equilibrium is a result of Kakutani’s

Fixed Point Theorem [see e.g., Myerson (1997)].

Because βNi is a decreasing function of other players’ trigger levels, the existence

of these trigger levels lowers V Ni from the level of VMi . Further, because this is

the case for all agents, i.e., every agent is lowering the trigger level because of the

competition, we realize that the equilibrium trigger level V Ni of Proposition 4.1 is

always between Ii and VMi .

5. Example

In this section we illustrate the model with a hypothetical example, which considers

a telecommunications network investment decision on an infinite time horizon. The

net present value of the project is derived from the capacity market price of the

network.

Assume first that there is one company, who can invest in a single network

project. We assume first that this project does not have any influence on the values

of the firms’ current businesses, so that the project can be evaluated independently.

The network is assumed to cost 3$ millions. This is assumed to be a sunk cost. The

network has capacity of 155 Mb per second and we assume that the variable cost is

zero. Therefore, we assume that it is always optimal to sell the whole capacity to

the market.

The capacity spot price under the new investment is assumed to be stochastic.

We assume that the risk-free interest rate (annual, continuous compounding) is

r = 0.05 and the market is risk-neutral, i.e., the market price of risk is equal to

zero. We denote by P the spot price ($/Mb) for one-month capacity usage, and

assume that this follows a geometric Brownian motion of the form

dP = αPdt+ σPdz . (5.1)

The revenue flow in time unit (year) from selling the capacity is

R = 155 Mb · 12 months/year · P $/Mb = 1860 · P $/year .

The expected present value of the project is then

V = E

[∫ ∞
0

R · e−rtdt
]

=
R

r − α ,

which, being the price times a constant, also follows a geometric Brownian motion

of the form

dV = αV dt+ σV dz . (5.2)
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The expected downward drift of the capacity spot price is assumed to be 2 per-

cent per year, i.e., α = −0.02. The volatility is σ = 0.2, i.e., 20 percent per year.

With these parameter values, the present value of the project in terms of the current

capacity price is V = 2.657 · 104 · P $.

The optimal investment rule can now be easily calculated. By Eq. (2.2), we

get for the monopoly investment trigger VM = 4.6 · 106 $. Equivalently, we can

express this rule in terms of capacity price. That is, the firm should invest when

the capacity price hits the level PM = 4.6 · 106/2.657 · 104 = 173.1 $/Mb for the

first time.

Assume next that the parameters of the model are kept unchanged, but now

there are two firms, who can invest in the project. The firms are symmetric and

both value the project at V . Now, the equilibrium investment strategies are given

by Eq. (3.1), and this means that both of the firms want to invest when the project

value reaches the level of the investment cost, that is V = I = 3$ millions, or in

terms of capacity spot price, when P = 112.9 $/Mb. Only one of the firms will in

fact invest, and the firms are indifferent about which of them gets the project. Due

to the competitive pressure the network will be built earlier in the case of two firms

than with one firm. The result will not change if the number of firms is increased

from two.

Next, consider the case, where there are two asymmetric firms who can invest in

the network, and assume that they know exactly each other’s parameters. There are

many reasons why the net present values of the investment project may be different

for different firms. As an example, we assume that the difference is in the investment

costs. Assume that the investment cost for the firm 1 is 3$ millions as before, but for

firm 2 this is 4$ millions. Now, the equilibrium investment rules for the firms are

given by Eq. (3.2). In this case, the result is that firm 1 invests when the value of

the project is 4$ millions, or when the capacity price is at P = 150.5 $/Mb.

Finally, assume that there are n firms who have different value processes for

the project and the firms do not know each other’s values. In this case we assume

that the value of the process cannot be directly derived from the capacity spot

price. This kind of a situation may arise, for example, if the project has some

influences on the other businesses the firms are involved in, and these firm specific

values are dependent on some other underlying stochastic factors. Specifically, we

assume that for each firm, the total value of the network project still follows a

geometric Brownian motion, but the firms do not know each other’s values or the

correlation effects between the values. Assume that there are n symmetric firms,

each of whom has its own value process, which follows dVi = αiVidt+ σiVidz. The

parameters are as before: αi = −0.02, σi = 0.2 ∀ i ∈ {1, . . . , n}. Further, assume

that firm i ∈ {1, . . . , n} estimates the hazard rate of the investment of a competitor

j ∈ {1, . . . n} − {i} by using a function of the form λj(V ∗j ) = A(V ∗j )−γ , where

γ > 0 and A > 0 are parameters. We assume in this example that γ = 1, and we

compare several different values for A. Notice that this function has the property

that as the trigger level V ∗j goes to zero, the likelihood to invest within the next
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Fig. 1. The equilibrium investment trigger of symmetric firms as a function of their number. The
full information competition and monopoly trigger levels are also shown in the figure.

short time interval approaches one, and as the trigger level goes to infinity, the

likelihood to invest goes to zero. The parameter A reflects the firms’ beliefs about

the likelihood that a competitor hits its trigger level. The higher the value, the

higher this likelihood is estimated.

The equilibrium investment strategies can now be calculated by solving the non-

linear Eq. (4.3). This is done with values A = 0.1, A = 1, and A = 10, and with

the number of players n ranging from 2 to 10. As the example is symmetric, all

firms adopt the same strategy. Figure 1 shows this equilibrium trigger strategy with

different parameter values. Also the monopoly strategy VM and the symmetric full

information strategy V N = I are shown in the figure. Notice that the equilibrium

trigger level is lower the higher the parameter A and increasing the number of com-

peting firms lowers the equilibrium trigger level. This is natural, since the tougher

the competition, the sooner one of the firms should invest.

6. Conclusion

We presented a game theoretic model to study the competition for a single invest-

ment opportunity under uncertainty. It was assumed that for each firm, the value

of the project follows a geometric Brownian motion. Further, it was assumed that

when one of the firms invests in the project, the opportunity is completely lost for

the other firms. We have illustrated our model with a telecommunications example.

It was shown that the assumption on the information that the competing firms

have about each other’s valuation for the project has an important effect on the

equilibrium. If there are at least two symmetric firms with the same valuation for

the project, then the competition completely eliminates all profits. When one of

the firms invests in the project, she is in fact indifferent between investing and

not investing. If, on the other hand, one of the firms has some advantage over the

others, e.g., the investment cost is lower or the value of the project is higher for her

than for the others, then in equilibrium that firm gets a strictly positive payoff.
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If the firms do not know each other’s valuation for the project, then an additional

assumption is required to describe their expectations of their rivals’ actions. We

proposed that firms assess the likelihood that a given competitor invests within

the next short time interval. In doing so, the firms understand that the higher

the trigger level where the competitor requires the project value to be in order to

invest, the lower the likelihood that the competitor in fact invests. We showed that

under this assumption, the Nash equilibrium leads to investment triggers that are

between the perfect information equilibrium level and the optimal monopoly level.
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