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Abstract. Integration of magnetic resonance (MR) and positron emis-
sion tomography (PET) images of the heart has proved its usefulness for
the estimation of the myocardial viability. In this paper, a method for
the rigid registration of cardiac MR and PET images is presented. It is
based on the matching of the surfaces of thorax structures extracted by
a deformable model from PET transmission and MR transaxial images.
MR short axis registration with PET emission image is easily derived
and allows the study viability in the proper anatomic conditions. The
method has been evaluated on ten patients suffering from three vessel
coronary artery disease. Qualitative results were good with 9 over the
10 available cases. A quantitative estimation of the registration quality
confirmed the nice abilities of this approach.

1 Introduction

The combination of multiple cardiac image modalities like Magnetic Resonance
Imaging (MRI) and Positron Emission Tomography (PET), has gained an in-
creasing interest for physiologic understanding and diagnostic purposes, specially
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for viability studies. The combination requires the geometric alignment i.e. reg-
istration of multimodal images. This is a difficult problem mainly due to the
continuous motion of the heart. Methods to correlate PET cardiac studies by
using a surface based image registration technique of PET transmission images
has been presented in [I] and [2]. In this work, we propose a new method for
cardiac transaxial and short axis (SA) MR and PET image registration. A pre-
liminary approach has been presented in [3]. Here, the method has been greatly
improved by substituting the manual segmentation of the thorax structures by
a deformable model based automatic segmentation. The data and the method
are presented in section 2. The registration results are presented in section 3 and
discussed in section 4.

2 Material and Method

2.1 Data

The data set is composed of MR and PET images of ten patients suffering from
three vessel coronary artery disease [4]. Mean age was 69 (8 men, 2 women).
All patients underwent MR, and fluorine-18-deoxyglucose (FDG) PET imaging
within 10 days. The MR imaging was performed at the Department of Radi-
ology of Helsinki University Central Hospital with a 1.5 T Siemens Magnetom
Vision imager (Siemens, Erlangen, Germany). A series of 39 ECG-gated contigu-
ous transaxial images was acquired during free respiration using TurboFLASH
sequence with the body array coil (Fig. 1a). The pixel size and the slice thickness
were 1.95 x 1.95 mm and 10 mm, respectively. Five ECG-gated breath-hold cine
SA slices covering the ventricles were also acquired. The pixel size for SA slices
was 1.25 x 1.25 mm and the slice thickness 7 mm with a gap of 15 mm between

slices (Fig. 1b).
() (d)

Fig. 1. (a) Transaxial and (b) SA MR images of the thorax and heart, (c) PET
transmission and (d) emission images.

PET imaging was performed at the Turku PET Centre using a Siemens ECAT
931/08-12 (Siemens/CTI, Knoxville, USA) PET scanner. A series of 16 contigu-
ous transmission and emission images was acquired. The pixel size and the slice
thickness were 2.41 x 2.41 mm and 6.75 mm, respectively (Fig. 1lc, d).
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2.2 Registration Protocol

The proposed registration method is based on the matching of the thorax and
lungs surfaces which are visible in both PET transmission and MR transaxial
images. The registration protocol first matches PET transmission and transaxial
MR images and then computes the SA PET slices that correspond to the SA
MR slices. The main steps are:

1) Image resizing to get the same isotropic voxel dimensions. Tri-linear interpo-
lation was used.

2) Segmentation of the thorax and lungs was performed for the transaxial MR
and PET transmission images by a deformable model based method [5] which is
summarized in subsection 2.3.

3) Selection of a set of points from the segmented surfaces of the thorax and
lungs in the PET model. The uniformly distributed nodes of the deformable
model] were used.

4) Calculation of the rigid registration parameters (3 translations, 3 rotations)
to find the best matching between the point set and the surface of the segmented
MR image. The minimization algorithm is explained in subsection 2.4.

5) Registration of the PET emission image to the transaxial MR image using
the computed registration parameters.

6) Registration of SA MR images with PET data. Slice position information con-
tained in the MR image header provides the transformation between transaxial
MR and SA MR slices. The SA PET slices corresponding to SA MR images are
computed using the estimated parameters of the transformation.

2.3 Deformable Model Based Segmentation

The segmentation of the thorax structures is based on the elastic deformation of
a topologic and geometric prior model using a multiresolution approach [5]. A
thorax model including full triangulated thorax and lungs surfaces was used with
transaxial MR images (Fig. 2a). With the transmission PET images, a truncated
model with only a part of the thorax was used (Fig. 2b).

Fig. 2. Geometric and topologic prior model of the thorax for (a) transaxial MR
and (b) transmission PET image segmentation.
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The deformation algorithm adapts the prior model to locally fit the salient
edges in the image within a minimization process. The energy to be minimized
is

Etotal = Eimage + 'yEmodelz (1)

where Ejnmqge represents the matching error between the prior model and the
partial edges in the data volume. FE,,,q4e; tends to preserve the model’s shape
by restricting the deformation of the prior model. It describes the deviation of
the model’s surface normals from their original orientation. The image energy
results from a distance map [6] built upon edges extracted either by a Canny-
Deriche method [7] or image thresholding. In order to select corresponding edges
with the model, oriented distance maps [5] were used. The parameter + sets the
contribution of the two energy components. A multiresolution process speeds up
the minimization of the energy and improves the convergence.

2.4 Estimation of the Rigid Transformation

The 6 rigid registration parameters (3 translations, 3 rotations) result from the
best match between the set of the nodes of the triangulated surfaces extracted
from the PET transmission image and the surfaces of the segmented MR image.
The optimal transformation minimizes the sum of the distances between the
transformed points and a distance map built upon the segmented MR surfaces
using the chamfer distance transformation [6].

For the sake of simplicity, the minimization algorithm is described here only
for 2 parameters representing, for example, the translation in x- and y-directions
on a 2-D plane. The extension to 6 parameters is straightforward. The parameters
to be optimized form the parameter vector (¢1, t2). The optimal parameter vector
is iteratively searched in the discrete search space. The initial position for the
parameter vector is (t10,t20) (Fig. 3). The iteration steps for the search of a new
parameter vector are as follows:

1) Possible values for the parameter i, k€[1,2] are ti-gd, ti-(g-1)dk,.. tk, ..,
tx+gdi, where g is a user-defined positive integer parameter affecting the number
of the possible new values, and parameter dj (positive real number) represents
the magnitude by which the parameter ¢ is varied.

2) For all (2g+1)" combinations of the parameter vector, where n is the number
of parameters (big dots in Fig. 3), the cost function is computed.

3) A user-defined number of combinations, m, having the lowest registration
error, are selected for the new initial parameter vectors (selected positions of
step 1, Fig. 3).

4) Each dg-component is divided by 2.

5) Steps 1-2 are repeated for all m initial parameter vectors. Then, steps 3-
4 provides an new local optima. Therefore, the number of initial parameter
vectors remains constant during the iterations. Iterations are repeated until the
cost function does not decrease more than a user-predefined value e.
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The algorithm does not necessarily converge to a global minimum of the
cost function. However, the method samples the search-space more than a basic
gradient descent method and allows find a minimum with a higher probability.
The sampling of the search space is controlled by the parameters g and dg. In
addition, the computation time is only a few seconds, which is generally not the
case with global optimization algorithms.

selected positions (step 1)

/ selected positions (step 2) \
¢

=)

initial positio

(t10,20) ﬁ

~
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Fig. 3. Principle for the search of the optimal translation parameters.

3 Results

3.1 Segmentation Results

Three multiresolution levels were used (for image data, model and deforma-
tion grid). Canny-Deriche method or image thresholding were used for the edge
extraction. Fig. 4 presents the segmentation results of case E1 for MR (top)
and PET transmission image (down). Segmentation results (white contours) are
compared to manual delineation (gray contours).

3.2 Registration Results

Fig. 5 presents the registration result obtained with the E1 case. SA PET images
which correspond to the MR SA image planes are computed using the obtained
registration parameters. In Figs. 6 and 7 registered end-diastolic MR and PET
emission images are presented in the transaxial and SA planes, respectively.
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Fig. 4. Segmentation results of transaxial MR (top) and PET transmission
(down) images for case E1. White contours correspond to the deformable model
based segmentation and gray contours show the manual delineation. A 3-D visu-
alization [§] of the corresponding deformable model based segmentation is shown
on the right.

Fig. 5. Contours from registered PET images are superimposed onto the MR
transaxial image plane. Automatically segmented contours are shown in white
and manually delineated in gray. Bottom right corner: A 3D visualization illus-
trates the positioning of the registered PET transmission data relatively to the
ray traced MR thorax image.

Fig. 6. Registered transaxial end-diastolic MR (top) and PET emission (bottom)
image slices for the E1 case.
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Fig. 7. Registered end-diastolic SA MR (top) and PET emission (bottom) image
slices.

4 Discussion and Conclusion

The proposed method was applied to the 10 available cases. It did give visually
good results for 9 cases out of the 10. In the failing case, there were unexpected
artifacts in the FDG PET data. In order to quantitatively evaluate the algo-
rithm, the statistics of the distance between registered PET surface points and
segmented MR image surface were computed. When using deformable model
based automatic segmentation, registration error was 2.8 + 0.5 mm (minimum
1.9 and maximum 3.8 mm). With the manual delineation of the thorax struc-
tures, registration error was 2.4 + 0.9 mm (minimum 0.5 and maximum 3.5 mm).
Although this computed error term mainly quantify the difference between seg-
mentation results of PET and MR thorax models, it gives a reasonable index of
the quality of the registration in the absence of a reference data set.

Due to the presence of arms in MRI and their absence in PET, we did exclude
points of the PET model located on the thorax sides for the calculation of the
registration parameters. Initial parameter vector should also be close enough for
the algorithm to converge to optimal result. This was the case in all of the studies
since the positioning of the patient was identical in both imaging modalities, and
as a result, the initial alignment of the MR distance map volume and the PET
model was similar.

We did not observe major differences between registration based on manual
delineation and automatic segmentation. In some cases, registration based on
manual delineation performed better. One possible reason for this is that some-
times the automatic deformable model based segmentation locally fails to follow
deep cavities. One additional segmentation step using a denser deformation grid
could help to solve this problem.

The automatic segmentation of the MR and PET images with size 256 x 256
x 217 voxels takes less than 3 minutes on a PC workstation (PIII, 800 MHz).
With the same image size, the execution time for registration was about 50
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seconds when about 400 points were selected to compute the rigid transforma-
tion parameters. The speed of registration algorithm depends on factors like the
need of the preprocessing, the complexity of the cost function and the number
of the cost function evaluations performed by the optimization algorithm [10].
Compared to the iterative closest point (ICP) algorithm [9], our approach also
requires the segmentation of the data. In our method, the distance map is com-
puted once as a preprocessing step and after that the estimation of the distances
between the model and the data points is immediate. On the contrary, in the
ICP algorithm, distances are explicitly computed at every iteration. In our ex-
periments the proposed registration parameter search strategy did provide a fast
and reliable results. In future works, we will compare current method to other
registration methods and also validate this method by using simulated images.

References

1. Pallotta S., Gilardi M. C., Bettinardi V., Landoni C., Striano G., Masi R. and Fazio
F.: Application of a surface matching image registration technique to the correlation
of cardiac studies in positron emission tomography (PET) by transmission images.
Phys. Med. Biol., 40 (1995) 1695-1708.

2. Kim R., Aw T., Bacharach S., Bonow R.: Correlation of cardiac MRI and PET
images using lung cavities as landmarks. Computers in Cardiology, (1991) 49-52.

3. Mikela T., Clarysse P., Lotjonen J., Sipild O., Hanninen H., Nenonen J., Lauerma
K., Knuuti J., Katila T. and Magnin I. E.: A method for registration of cardiac
MR and PET images for the myocardial viability study. In: Marzullo, P. (ed.):
NATO advanced research workshop - Understanding Cardiac Imaging Techniques
From Basic Pathology to Image Fusion. NATO Science Series: Life and Behavioural
Sciences. Vol. 332. IOS Press (2001) 155-165.

4. Lauerma K., Niemi P., Hanninen H., Janatuinen T., Voipio-Pulkki L., Knuuti J.,
Toivonen L., Mékeld T., Makijarvi M. A. and Aronen H. J.: Multimodality MR imag-
ing assessment of myocardial viability: combination of first-pass and late contrast
enhancement to wall motion dynamics and comparison with FDG-PET. Radiology,
217 (2000) 729-736.

5. Lotjonen J., Reissman P.-J., Magnin [.E. and Katila T.: Model extraction from mag-
netic resonance volume data using the deformable pyramid. Medical Image Analysis,
4 (1999) 387-406.

6. Borgefors G.: Hierarchical chamfer matching: A parametric edge matching algo-
rithm. IEEE Trans. Pattern Anal. Machine Intell., 6 (1988) 849-865.

7. Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Machine Intell., 8 (1986) 679-698.

8. Pyokkimies E. P, Salli E. and Katila T. Fast image order volume rendering algorithm
for multimodal image visualization. In: Nenonen J., Ilmoniemi R.J. and Katila T.
(eds.): Biomag2000, Proc. 12th Int. Conf. on Biomagnetism, (2001) 1043-1045.

9. Besl P.J. and McKay N.D.: A method for regisration of 3-D shapes. IEEE Trans.
Pattern Anal. Machine Intell., 14 (1992) 239-256.

10. Van Herk M.: Image registration using chamfer matching. In: Bankman I. N. (ed.):
Handbook of medical imaging. Academic Press (2000) 515-527 .



	Introduction
	Material and Method
	Data
	Registration Protocol
	Deformable Model Based Segmentation
	Estimation of the Rigid Transformation

	Results
	Segmentation Results
	Registration Results

	Discussion and Conclusion

	Copyright: © 2001 Springer-Verlag. Reprinted with permission from Niessen W. and Viergever M. A. (Eds.), Proceedings of the
	Copyright 2: 4th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'01).
	Copyright 3: Springer. Lecture Notes in Computer Science 2208, pages 557-564.


