Reprinted from Gero, J. S., (Ed.), Artificial Intelligence in Engineering: Design. Elsevier Science Publishers, Amsterdam,
Netherlands, pages 101-118.

101

© 1988 Elsevier and © 2003 authors. Reprinted with the permission of the authors.

An electronic design CAD system combining knowledge-based
techniques with optimization and simulation

T. Ketonen, P. Lounamaa, J. K. Nurminen
Nokia Research Center, PO Box 780, SF-00101 Helsinki, Finland

ABSTRACT Recently intelligent CAD systems have been
subject to considerable interest. The emphasis of the
research has been on symbolic computing techniques
and advanced mathematical techniques such as
optimization and simulation have attracted less
attention. We believe that the coupling of these
symbolic and advanced numerical techniques is
superior to the use of each one separately. Such an
integrated CAD system has been implemented for analog
electronic design. The system is used in the design
of mobile telephones and radio 1links. Initial
experiences of the users suggest clear increases both
in the productivity of the design engineers and in
the quality of the designs.

1. INTRODUCTION

Recently intelligent CAD systems have been subject to
considerable interest (for an overview see (Sriram
[11])). The application areas as well as the goals of
the studies have been varied but most of them have
been centered around the use of knowledge-based
techniques (Kowalsky [7], Mitchell [9], Mittal [10]).

The use of design knowledge and symbolic
manipulation is not adequate in applications which
require extensive use of numerical values, such as in
the design of analog radio circuits. Mathematical
optimization, simulation and other advanced numerical
techniques are needed, for instance, to find the best
combination of parameter values or to verify the
behaviour of a design. Since these numerical tools
and techniques are of great help to a design engineer
it should be clear that incorporating them in a
knowledge-based CAD-system 1is beneficial. Forcing



102

different tasks to a unified framework, e.g., rule-
based reasoning, is a common human mistake (Einhorn
[3]) which should be avoided by selecting for each
task the method or tool that is best suited to it.

The wuse of numerical techniques is often
complicated since the user has to define the problem
in a special way for each tool. Moreover, the
selection of a proper tool for a particular task can
be difficult. These decisions require the user to
have considerable expertise. Experimental, innovative
design is difficult in an environment which
constantly forces the user to perform routine tasks.

Coupling symbolic and numeric computing
(Kitzmiller [5]) offers new solutions to the above
problems. Symbolic computing techniques can be used
in problem formulation and in the interpretation of
results but the actual calculations are performed
using numerical routines. Combined with a graphical
user-interface this technique allows the user to work
with familiar concepts, such as design diagrams, and
easily perform necessary analysis and synthesis
operations. The mathematical details of the design
tools are hidden from the user allowing him or her to
concentrate on important design decisions.

The use of a multitude of tools is particularly
important in analog CAD, since no single tool can
adequately analyze the behaviour of a design. Radio
frequency (RF) design 1is even more complicated
because of the high signal frequencies. Therefore it
has been a challenging testbed of our ideas in a
project developing a CAD system called RFT (Radio
Frequency Tools) for RF-design.

In the next section we represent an overall view
of the RFT system. The roles of optimization and
design knowledge in design synthesis are examined in
section 3. An example of the functional level design
of a mobile telephone is given in section 4. 1In
sections 5 and 6 the use of simulators is discussed
and the final section summarises our experiences and
discusses the status of the work.

2. THE STRUCTURE AND IMPLEMENTATION OF THE RFT DESIGN
SYSTEM

Most of the work on intelligent electronic
CAD-systems has been concerned primarily with digital
design (e.g. Brewer[2], Mitchell [9], Subrahmanyam
[12]). Compared with digital design, the number of



103

components in a typical analog design is small but
the functions and dependencies of analog components
are very complicated. Therefore complex simulators
and even laboratory prototyping are required to
verify the behaviour of a design.

One of the main goals of the RFT-system is to help
the engineer to use these different tools in an easy
way. This is accomplished by a common graphical
user-interface to all of the design tools. Whenever a
certain task has to be done, the proper tool is
selected and the design diagram is converted to the
format required by the tool. In addition, a number of
tool specific checking and correction rules are used
to guarantee the validity of the tool input.

Besides tool-specific knowledge the system
contains design knowledge which is used in
cooperation with simulation and optimization tools to
synthesize and evaluate designs. The design engineer
has an integral role in the evaluation and
modification of suggested designs, bringing
flexibility and creativity to the system. The design
tools perform routine tasks leaving only the most
important design decision to the engineer.

The RFT system is implemented in the HP-9000
series workstation using its extended Common Lisp
-environment. The most important non-standard
extensions used are function calls to graphics and
windows libraries, foreign function interface to C-
and FORTRAN-routines, operating system calls and the
object oriented programming system.

The object oriented programming paradigm has been
used to represent the design entities. Since class
definitions wusing the object system on the HP
computer require considerable amounts of memory, the
representation had to be simplified to reduce the
number of different object classes.

Display windows, design diagrams and design
elements, that 1is components and Dblocks, are
represented as objects. Display windows take care of
the actual display of design diagrams. Each diagram
has a 1list of element-objects belonging to the
diagram. Diagram-objects also have methods for
manipulating the elements in the diagram, performing
various analysis etc. The most important data in
element-objects are attributes and connections to
other elements. Elements also have methods which
specify their behaviour in different conversions and



104

operations during the design process.

TOPSIM

FUNCTIONAL LEVEL

DESIGN

——| OTHER TOOLS

DB

SIMULATOR 1

COMPONENT LEVEL
DESICN SIMULATOR 2

OTHER TOOLS

Figure 1. An overview of the system architecture.

The design objects are manipulated via a graphical
user interface. Using the mouse and pop-up menus the
user can build design diagrams, edit attribute
values, control the use of different tools and the
representation of their results. Although the system
automates many phases of the design process a user-
friendly interface is very important encouraging the
user to explore new alternative solutions and in
visualizing design diagrams and results of analysis.

A relational database is used to store the design
diagrams, their components and other design data. The
interface between the database (in our case Oracle)
and Lisp is implemented using a layer of C-code which
passes the database queries from Lisp to the database
and returns the found rows. In the database, object
instances are mapped to relations, each relation
corresponding to an object type. The relations are
automatically created in the database when new
component types are added. If existing components



105

types are modified incremental changes to the
database are made.

Most of the design and component type knowledge is
stored in textual definition files so that they can
be updated by well-informed design engineers. The
knowledge is represented by macro-calls. The macros
convert the knowledge to a suitable form for the
system to use. For instance, the following functional
block definition is a call to the Lisp macro def-
func-element. It defines the corresponding object
class and routines which, for instance, check that a
proper number of input and output signal are
connected to the block. This definition also contains
data which is used to perform analysis such as the
transformation functions and attribute conversion
rules.

(def-func-element VOLT_ CONTR_OSC
:class sub
¢tinputs 1
toutputs 1
:frequency transformation "VCO_CONSTANT/S"
:phase_transformation "VCO_CONSTANT"
tattributes
((block_type nil string)
(center_ frequency nil frequency)
(vco_constant nil vco-gain))
tattribute conversions
((vco_constant "vco_constant*2.0*PI"))

As a side-effect the definition macros gather
useful information to be used in other parts of the
system. For instance, a file with the statements
defining the database relations is created when the
knowledge definition files are evaluated.

Structuring the system as discussed above allows
the division of development work between the domain
experts and the system developers. Using the
knowledge definition files the users enter the design
and component knowledge by themselves. This means
that also the longer run maintenance of knowledge in
the system can be carried out by the domain experts
themselves. The system developers create general
tools which utilize this user-specified knowledge.

3. DESIGN SYNTHESIS USING DESIGN KNOWLEDGE TOGETHER
WITH OPTIMIZATION

The goal of product design is to develop a product



106

fulfilling a given specification. Moreover the design
should be optimal in some respect when, for instance,
cost, size and power consumption is concerned. These
are normally conflicting criteria, and therefore
pareto-optimal solutions are common in design tasks.
Pareto-optimality (Zeleny, [14]) means that when one
criteria is improved some other must be relaxed. The
selection among .these pareto-optimal designs is
largely a matter of taste which depends on the
business prospects and practices in the field.

The above description suggests that a design task
can be represented as a multi-objective optimization
problem. Although this is theoretically possible and
feasible in some fields, few practical electronic
design problems can be completely solved wusing
mathematical optimization techniques. Most real
design tasks are so complex that they cannot be given
a precise mathematical formulation, or if the problem
can be formulated, it 1is computationally too
difficult to be solved in a reasonable time (Klein

[61).

Partitioning a design to subproblems reduces the
complexity of the problem. The subproblems are solved
and their solutions combined to obtain a complete
design. The division can correspond to the natural
abstraction levels of the design process, such as the
functional, component and layout design levels, but
each level may also be further divided into simpler
subtasks. Such a decomposition seldom leads directly
into a consistent solution. Instead a user-controlled
iterative process is needed to ensure that the
interactions between subsystems are properly handled.

Depending on their nature, the subtasks can be
solved either by wusing design knowledge or by
optimization. (By optimization we mean the use of
well-known numerical mathematical optimization
algorithms. Heuristic rules which are used to
manipulate some features of a design, such as
complexity, are considered to be design knowledge).

When feasible, the use of optimization instead of
design knowledge is a preferable alternative since
the optimization algorithm finds a mathematical
optimum to a given problem. Using heuristic rules the
optimal solutions are practically never found. 1In
optimization the user can control the effect of
various factors by weighing those variables that he
or she considers important and experiment with
emphasis on different features of the design.



107

Not all problems are suitable to optimization and
for these heuristic techniques are needed. These
problems can be solved either by using formalized
design knowledge or by asking the design engineer for
a solution. Whenever the design engineer is making
design decisions, verification rules can be used in
order to eliminate designs which violate known design
constraints.

As an example of the above concept we analyze in
the next section in more detail the functional level
design of a receiver as implemented in RFT.

4. FUNCTIONAL LEVEL RF-DESIGN

RF-design consists of various abstraction levels such
as functional, component and layout design. Starting
from the functional level the design proceeds
hierarchically to more detailed design levels. Since
the design decisions at the functional level have the
greatest effect on the performance and cost of the
final device, efficient design tools are particularly
important at this level.

The parameter values as well as the structure of
the design are defined in a stagewise manner using a
number of tools. Some design stages may have to be
repeated if drastic modifications are later needed.
The user can control the flow of the design process
and modify any design decision made by the system.
The main design steps of the functional level design
are represented in figure 2.

The functional level of RF-design can be divided
into structural design and parameter selection tasks.
Structural design rules are wused to suggest
modification to the structure of a design diagram.
The parameter values are fixed using both numerical
and knowledge-based techniques.

Some parameters have fairly simple mathematical
dependencies and their values can be solved using
optimization. For instance, the gain parameters of
consecutive blocks can be summed up to obtain total
gain. In the case of mobile telephone design about
one half of the parameters can be solved in this way
but they are fortunately the most important ones.



108

SPECIFICATION

y

INITIAL GUESS
* OLD DESIGN FROM DB
* INITIAL DESICH RULES

!

FORMULATE PROBLEM

* GET DATA FROM DB & USER
* COMPUTE GRADIENT MATRIX

v

NON-LINEAR
OPTIMIZATION

* IMSL-LIBRARY

ny

USER
* SUPERVISION AND CONTROL
* MODIFICATIONS

INTERPRET RESULTS
MODIFY

v

STRUCTURAL
MODIFICATION RULES

h 4
FAST ANALYSIS

* TRANSFER FUNCTION
* STEP RESPONSE ETC.

v

SIMULATE

* CONVERT TO TOPSIM-LEVEL
* TOPSIM-SIMULATION

v

EVALUATE
RESULTS

COMPLETED FUNCTIONAL LEVEL DESIGN

Figure 2. The flow of design synthesis.

In our case the original optimization task is
quite complicated but by variable substitutions
simpler non-linear optimization problems can be
formulated. The number of variables in the model
depends on the number of blocks in the design, but
the number of constraint equations depends only on
the design task. The forms of the constraint
equations are easily derived from the specifications
of the designed device.

The formulation of the optimization criteria is
more complicated. Since the parameters selected in
the functional level design form the specification of
the component level design, the goal is to select
them so that an acceptable component level design for
each block can easily be found.



109

Each parameter has a range of possible values. One
end of the interval represents the best possible
value of the parameter, which is also the most
difficult one to achieve in component level design.
The other end-point (if any) is a parameter value
which is easily obtained in the component level
design. For instance, the gain of an amplifier may
vary in the range [0.0; 15.0], the lower bound 0.0
meaning that no amplification is needed. Naturally,
the component level design of an amplifier is very
easy if the required gain is near 0.0. For some
parameters, such as noise figure, the higher values
are easier to obtain. A good heuristic objective
function is thus to minimize the sum of the distances
of parameter values from their easy-to-design end-
points.

Because of the differences in the component level
design, the difficulty to design a block varies from
one block to another. Some blocks are fairly easy to
design although their parameters have tight
specifications. To take this kind of factors into
account, the differences in the object function can
be given weights according to their importance.

The optimization problem is thus the following:

minimize sigma wj(x; - 1l;j) + sigma wj(uj - Xj) (1)
i i

subject to
the specification and bounds of xj

where
x; is the unknown parameter value,
l; is its lower bound,
u; is its upper bound and
w; is the weight of importance.

The objective function is divided into two parts
since some of the parameters are favorable small and
some large. The weights w; depend on the block type
and are larger for blocks that are difficult to
design at the component level. Generally the
selection of wi is fairly easy and minor changes in
their values have only 1little effect on the
optimization results.

The non-linear optimization problem is solved
using the successive quadratic programming algorithm
implemented in subroutine NCONF/NCONG of IMSL-library
(IMSL [4]). To be able to use the FORTRAN subroutines



110

of IMSL a FORTRAN-routine defining the optimization
problem has to be generated. It consists of a main
program and a subroutine defining the constraint and
objective functions.

The efficiency of the optimization routine can be
enhanced if a gradient matrix of partial derivatives
is used. It is computed in symbolic form using a
symbolic derivation routine (Abelson [1]). The
gradient matrix can also be used if the designer
wants to gain some insight of how each variable
contributes to the value of a particular function.
The entries of the gradient matrix in a particular
point are approximations of changes in the functions
values as the variable values are slightly altered.

The results obtained wusing the optimization
routine are optimal with repect to the used objective
function. However, since the objective function is
defined heuristically there is no guarantee that the
solutions are indeed optimal. To define optimality in
this kind of situations is difficult since there is
no well-defined numerically measurable goal. Using
the heuristic objective to minimize the difficulty of
component level design seems, however, to work in
practice. Parameter values found by experienced
engineers and automatically generated ones were very
near to each other in a number of test cases.

Some blocks, for instance filters, have parameters
with discrete values, the requirements of some of the
parameters are different on higher and lower
frequencies etc. To take these kind of factors into
account a number of optimizations with minor changes
in the problem statement are needed. Often the
changes are based on the results of the previous
optimizations and lead to fixing parameter values at
various levels to test the behaviour of the design
with, for instance, different signal frequencies.

The optimization routines can only be used to
select some of the parameters. To fix the values of
the rest of the parameters is more difficult. The
dependencies of parameter values are so complicated
that their effect on the performance of the overall
design is very difficult or even impossible to
compute. For instance, the behaviour of filters is
characterized by their response curves. To define the
form of the curve is numerically extremely difficult
or even impossible 1in practice. 1In . these cases
simulations can be used to study the effects of these
parameters. Heuristic situation specific design



111
rules, such as

(if (and (type-of block ‘'filter)
(> (rf-frequency block) 400)
(= (if~number block) 1))
(setf (i-f-frequency block) 45))

are used to suggest values for some parameters and to
propagate the effects of possible modifications.

Structural design is needed to add or remove some
block in the design or change the order of the
blocks. The need to change the structural design
arises in two cases: when it seems likely to fill the
specification with a smaller number of blocks or when
it has been noticed that the specification cannot be
fulfilled with the current structure. The former case
leads to the reduction of blocks and thus to more
economical designs. The latter is aiming at finding a
feasible solution to the problem by rearranging or
substituting some of the current blocks or by adding
new blocks.

The decisions to modify the structure are governed
by rules which are based on the optimization or
simulation results. A typical rule like

(if (and (type-of block ‘amplifier)
(< (gain block) 2.0))
(remove-block block))

specifies that if the computed gain of an amplifier
is very small then it is likely to be unnecessary and
can be removed.

The modification rules are often straightforward
and their number is relatively low, less than 100 per
design type. As a starting point a similar or
resembling design can be read from the database or
the user can supply one. Another alternative is to
start with a maximal number of blocks which is known
to satisfy the specification and then drop
unnecessary blocks away as the structural design
proceeds.

In summary, symbolic computing and heuristics are
used in three ways in the design process: the former
to formulate the optimization problem, the latter as
a way to define performance «criteria and a
combination as rulebases that suggest structural and
parametric modifications of designs.



112
5. SIMULATOR INTERFACE

RF-design is a demanding task because of the complex
interdependencies among the components. Prototyping
is often the only way to validate designs. The use of
simulators, however, has reduced the need for
prototyping considerably. To simulate a design a
number of simulators are needed, each with different
capabilities. For instance, at the component level,
separate simulators are used for 1linear and
non-linear circuits. At the functional 1level a
block-level simulator, TOPSIM (TOPSIM [13]), is used.

Although the use of simulations reduces the amount
of time needed for prototyping it causes some
additional complications which are especially evident
when a number of simulators are used. The designer
has to be familiar with the specific input and output
formats of the simulators. Moreover, most simulators
have some special "tricks" which the user has to be
familiar with to get meaningful results and to avoid
inconvenient run-time errors.

A unified graphical user-interface is a partial
solution to the above problem. With it the user can
work with familiar design diagrams. The design
diagram is created using the mouse and menus and the
values needed are supplied as parameters for
individual blocks. Once the design has been created
an automatic conversion to the input format of the
simulator takes place, the conversion routine taking
care of the syntax and naming conventions of the
simulator. Figure 3. represents the graphical
simulator diagram representation together with the
generated input file.

This, however, is not enough to help the user to
operate the simulators with ease. In most cases the
user has to pay attention to simulator specific
constraints. Some constraints are even undocumented
and may result in misleading simulation results.
Expertise to avoid errors like this is wvaluable and
should be distributed to end-users.



SIGGEN I%W'—H BPSUM ;%{ FILCHB l——}{ LOMULT -i‘——l%
/]

NBINN SIGGEN

INITIAL
DELT=5.0E-4

FINTIM=0.1

F1=10000.0

PARAMETER F2=20.0,40.0
DYNAMIC
X7:=SIGGEN(50.0,1.0,0.0
X6 :=AMPMOD(F1,1.0,0.0,0
X2:=SIGGEN(F1+100.0,1.0
X1:=NBWN(1,F2,F1)
X5:=BPSUM(X6,X1,F1)

X4 :=FILCHB(2,8,F1,100.0,1.0,0.2,0,X5)

X3 :=LOMULT (X4 ,X2)

MEASURE PERSPE(0.0,100,0.0,200.0,-1,1,10.0,2,X3)
MEASURE SIGNOI(0.0,1/DELT,10,X3)

END

)
.5,1.0,X7)
,0.0)

.

Figure 3. A simulation diagram and a corresponding
simulator input file

In our design environment we use simulation
knowledge to verify simulator input and warn users of
illegal value or component combinations. There are
two types of verifications, those done when the
diagram editor is used and those which can be used
only after the diagram is ready for simulation. At
editing time fairly simple verifications are
performed to ensure that a proper number of input and
output signals are connected to each block and that
these signal are of compatible type. The checks done
when the whole diagram is ready are more complicated.
They concentrate on the dependencies between the
parameter values and the signal types. For instance,
TOPSIM requires some signals to have a particular
type. The type of a signal is determined at run-time
by a threshold value which depends on the simulation
parameters. An illegal signal type leads to an error
which is noticed only after a considerable run-time.
To find this error before simulation, the values of
signal types are estimated and propagated through the



114
diagram to make sure that proper signals are used.

The above discussed simulation knowledge as well
as the definition of the blocks known to the
simulator are defined using Lisp-macros. The domain
experts write the definitions and the tools for their
use are embedded in the system. The following
definition defines a simulator block ampmod.

(def-top-element ampmod
sdocument "AMPMOD simulates an analog amplitude
modulator."

:class modem

tinputs baseband

soutputs analytic

tattributes

((£f0 nil frequency "carrier frequency")

(amp 1 amplitude "carrier amplitude")

(pha 0 phase "carrier phase in radians")

(sens 1 am_sensitivity "modulator sensitivity")

(amean 1 voltage "DC component"))
sconstraints
("f0 > 1.0/(5.0*delt)"))

The block has 5 attributes: f0, amp, pha, sens and
amean. Each attribute has a name, default value,
attribute type and help text. The attribute types are
defined in a separate file and consist of value
ranges, default units and alternative unit fields.

Input and output type information are used to
check the consistency of connected ports. The
constraints field is used for error checking to find
illegal parameter value combinations. Some components
have additional keywords describing exceptions to the
normal wuse of the block, such as signal type
modification rules or reversed parameter order in the
simulator input. Since the definition of new
components is fairly easy using this approach, the
domain experts can perform the maintenance of the
system.

The use of conventional simulators based on
traditional programming languages is dictated by
their availability and hard coded features. An
alternative approach is to use Lisp-based simulators
which facilitate the modelling work by allowing easy
changes to the model and support experimental
simulations by eliminating compilation, linking and
data transfer times consumed when using a separate
simulator (Lounamaa [8]). Because of the high quality



115

of modern Lisp compilers (Abelson [1]) and the
possibility to declare types of variables the
execution speed of Lisp-based simulators is
comparable to, for instance, FORTRAN-based
simulators.

6. CONVERSION TO SIMULATOR LEVEL

At the functional design 1level the simulators
(e.g., TOPSIM) operate with ideal components. Since
the real components have many non-ideal features they
have to be modelled using a number of ideal simulator
blocks. For instance, an amplifier can be modelled
using an ideal amplifier block and a white noise
random generator. Because of ideal blocks, diagrams
describing simulation input are different from
original design diagrams.

A transformational approach is used to convert a
design diagram to a corresponding simulator diagram.
However, the simulator diagrams can also be edited in
the same way as the design diagrams and can therefore
be modified if the user is not satisfied with the
ones generated by the system.

The transformation rules are defined by relating
each functional block to a corresponding combination
of TOPSIM blocks, defining their connections and
rules specifying their parameters. The following
definition defines the conversion rule for mixer. The
results of the conversion strongly depend on the
parameter values of converted blocks. Conversion
results with different parameter combinations are
represented in figure 4.

Conversion rule for Mixer
The TOPSIM blocks used in simulation are listed
in elements
The connections of the blocks are given in
connections
Their relative locations are given in locations
fconversion Mixer
(if block_type
;; simulate mixer using a table of measured
:; values
(progn (elements (bpnonl

ta block_type

tb block_type

tc block_type

sbkoff 0.0)

(lomult))

(connections (input bpnonl)

(D Ne e Ne No Neo ~e

N N0 NS NS N N W
Q. Ne Ne Ne Ne we ~o



116

(bpnonl lomult)
(input lomult))
(locations (bpnonl 0 0)
(lomult 1 0)))
(if noise_figure
;; add noise block to simulate noisy behaviour
(progn (elements (lomult)
(nbwn :ix 1
:snr noise_figure
:£0 upper rf freq)
(bpsum :f0 upper rf freq))
(connections (input bpsum)
(nbwn bpsum)
(input lomult)
(bpsum lomult)
(lomult output))
(locations (bpsum 0 0)
(nbwn 0 1)
(lomult 1 0)))
;; ideal mixer
(elements (lomult)))))

(a) : L (b)

LGFIIN I—-%' BPNONL }—9{ LOMULT ]

(c) (d)

NBWN 1
GRAIN

Figure 4. The use of a conversion rule to convert
mixer to TOPSIM-level. (a) original functional level
diagram (b) TOPSIM-diagram of a mixer whose behaviour
has been measured (c) TOPSIM-diagram of a noisy mixer
(d) TOPSIM-diagram of an ideal mixer.



117

For some components the transformations depend on
the type of the simulated measurement and therefore a
8number of transformation rules are needed for each
block. After the transformation is performed
verification rules are used to ensure that the input
is valid, after which the simulation is started.

7. CONCLUSIONS AND STATUS OF WORK

In this paper we have described how knowledge-based
techniques have been integrated with simulation and
optimization techniques in an analog CAD system. The
resulting RFT-system offers easy access to different
design tools as well as design synthesis options. The
graphical interface of the system allows users to
work with familiar design concepts and the tool-
specific knowledge of the system takes care of
necessary conversions.

Although the individual techniques wused are
already established, 1little work, at least to our
knowledge, has been done to integrate them in a
design system of industrial scale. Our experience
indicates that AI- and OR-techniques can be
successfully combined in a CAD-system. Although our
application, RF-design, is a highly specialized field
we believe that similar solutions could also be
successfully used in other design tasks.

An early version of the system for functional
design was delivered in December 1987 to a RF-design
group. Objective evaluation of the system performance
is difficult since the quality of designs depends on
many factors which are difficult to measure and
compare. The same applies to design times since no
studies were conducted before the system was
delivered. The subjective experiences of the design
engineers suggest major speed-ups in design times and
an increase in the quality of the designs. The
improvements result largely from elimination of
routine tasks, from the detection of design errors in
early stages of the design and from the increased use
of analysis and simulation tools.

Currently the system is being extended to support
component level design.

8. ACKNOWLEDGEMENTS

The authors gratefully acknowledge Nokia-Mobira for
design expertise and funding.



118

REFERENCES

1.

10.

11.

12.
13.

14.

Abelson, H. and Sussmann G. J.(1985). Structure
and Interpretation of Computer Programs, The MIT
Press, Cambridge, Massachusetts.

Brewer, F. and Gajski, D.(1986). An Expert-System
Paradigm for Design, in Proceedings of the 23rd
Annual Design Automation Conference.

Einhorn, Hillel J.(1982). Learning from
Experience and Suboptimal Rules in Decision
Making, in Kahnemann, D., Slovic, P. and Tversky
A. (Ed.), Judgement under uncertainty: Heuristics
and Biases, Cambridge University Press.

IMSL Math/Library User’s manual(1987). IMSL, pp.
895-908

Kitzmiller, C. T. and Kowalik, J. §S.(1987).
Workshop report: Coupling Symbolic and Numeric
Computing in Knowledge-Based Systems,AI Magazine,
Summer 1987.

Klein, M. F. and Hodges, D. A.(1986). A Modular
Framework for an Interactive Design Synthesis
System, in Digest of Technical Papers of the IEEE
International Conference on Computer-Aided
Design, Santa Clara, 11-13 November.

Kowalsky, T. J.(1985). Knowledge Representation,
Learning and Expert Systems, An Artificial
Intelligence Approach to VLSI Design, Kluwer
Academic Press, Hingham, MA.

Lounamaa, Pertti(1988). Advanced Modeling
Environment for Dynamic Systems, to appear in
Simulation and Modelling in Artificial
Intelligence, John Wiley.

Mitchell, T. M., Steinberg, L. I. and Shulman,
J.(1985). A Knowledge-Based Approach to Design,
IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-7(5), pp. 502-510.

Mittal, S., Dym, C. L. and Morjaria M. (1986).
PRIDE: An Expert System for the Design of Paper
Handling Systems, IEEE Computer, July 1986.
Sriram, D. and Joobbani, R. (Guest
Editors)(1985). Special Section on AI in
Engineering, SIGART Newsletter(92);38-127.
Subrahmanyam, P. A.(1986). Synapse: An Expert
System for VLSI Design, IEEE Computer, July 1986.
TOPSIM III User'’s manual (1983), Torino
Polytechnico.

Zeleny, M.(1982). Multiple Criteria Decision
Making, McGraw-Hill, New York.



	Copyright: Reprinted from Gero, J. S., (Ed.), Artificial Intelligence in Engineering: Design. Elsevier Science Publishers, Amsterdam,
	Copyright 2: Netherlands, pages 101-118.


