© 1989 The Society for Modeling and Simulation International (SCS). Reprinted with permission from Proceedings of the 3rd European
Simulation Congress. Edinburgh, Scotland, pages 622-627.

Reprinted with the permission of the publisher.

A Knowledge-Based Simulation Environment for Electronics Design

Timo Ketonen and Jukka K. Nurminen
Nokia Research Center
Espoo
Finland

ABSTRACT

In this paper we discuss an object-
oriented simulation environment that couples
symbolic and numeric computing. Symbolic
computing is mainly used to facilitate the
use of complicated numeric design tools, such
as simulators and optimization algorithms.
Instead of studying new techniques for design
analysis or synthesis, the goal of our research
has been to develop a framework which enables
easy and efficient use of existing tools.
Object-oriented techniques are used to provide
the necessary flexibility. Application and
tool specific knowledge, together with a
graphical user-interface, take care of design
routines and assist wusers in operating
different design tools. The techniques have
been applied in a design system for mobile
telephones which is currently in use in a
number of design groups at Nokia Corporation.
Various aspects of this on-going work have

already been discussed in e.g. [1-4].
INTRODUCTION
Graphical wuser interfaces have

significantly simplified the use of complex
mathematical tools. However, the user still
has to take care of tasks like selecting proper
tools for a design task, formulating models
for the tools and defining proper parameter
values for the efficient and reliable operation
of the tools. In these tasks he needs guidance
and counseling especially if he is not a

frequent user. The required expertise is
difficult to learn since many tasks, like
design, require the use of a number of

different tools most of which are used casually
during certain design phases.

The concept of coupling numeric and
symbolic computing (for an overview see [5])
shows promise in helping with the above
problems. Symbolic computing can be used to
assist in the selection and use of numeric
tools and in the interpretation of results.

Object-oriented techniques have attracted
considerable attention both in the simulation
community and as a useful technique to develop

modular and flexible graphical wuser
interfaces. To allow for a modular, easily
expandable framework to be created, object-

orientation is seen as an important component.

In this paper we describe how the above
techniques have been used in RFT (an acronym
for Radio Frequency Tools) design environment
to facilitate the use of different design
tools.

622

BACKGROUND AND SOME REQUIREMENTS

The application field, radio frequency
design, is characterized by a small number of
components with highly complex interactions.
Mathematical modelling of the interactions is
not easy and different tools and algorithms
are needed to solve the resulting numerically
difficult problems. Since design is typically
an iterative process analysis tools are
repeatedly used in the evaluation of the
performance of the designs. This increases
the need to perform the analysis easily, and
preferable automatically, to save design time.

Another feature of importance is the
hierarchical organization of the design
process. First, an initial functional level

design is developed which on a crude level
fulfills the specification. Parameters selected
at functional level form the specification of
the component level design. And once the
component level design of a functional level
block is completed the performance measures
are propagated back to functional level to
see how the actual component level
implementation affects the overall behavior
of the device.

In order to be useful in practical design
work the design environment should have

* one graphical interface for all integrated
tools :

* the ability to use existing design tools
and allow easy integration of new ones

* flexible communication which allows different
design tools to co-operate

* support for hierarchical design

Existing design environments do not
fulfill these requirements very well. Although
graphical interfaces are getting more and
more popular, most interfaces are developed
to take care of the use of only one tool.
Very few tools allow the users to integrate
existing design tools and design conventions
in a simulation environment. From the
practical point of view this is an essential
requirement since in order to keep up with
the latest technology the system must allow
the addition of new tools and algorithms.
When all tools are hidden behind a common
user interface, changes in the integrated
tools do not cause any additional difficulties
to the user.

RFT DESIGN ENVIRONMENT

The main motivation in the development
of RFT has been the creation of an environment
that is useful in practical design work. The
application of object-oriented architecture
and symbolic computing has made it possible
for RFT to fulfill the above requirement
fairly well.

Optimi- Design
zation Synthesis
Cascade %raniﬁer Apl
Topsim : unction ac
P equations |analysis P

|

(Interfac% (Interfac% @lterfac% (Interfac%

N/

[D]
_— N
Design T
T

NS

Figure 1. The general architecture of RFT

Fig. 1 represents an overview of the
architecture of RFT. Design entities are
implemented using object-oriented programming.
Interfaces to the basic design tools
manipulate this representation. The basic
design tools include simulators, like TOPSIM
[6] and APLAC [7], and application specific
analysis tools. More advanced tools for
simulated measurements, optimization and
rule-based design synthesis control the use
of basic tools and perform operations that
require co-operation. The graphical user
interface allows users to create and modify
design diagrams in an easy way and to visualize
the results produced by the tools. An external
database is used to store the design objects
permanently.

RFT has been implemented in Lucid Common
Lisp. Lucid Common Lisp allows Lisp programs
to issue operating system commands and call

functions written in other programming
languages. These features have been used to
integrate external analysis tools to the

623

system. Because Lucid Common Lisp is supported
by all major manufacturers of engineering
workstations the above non-standardized
features as well as graphics and windows
functions are highly portable. RFT is currently
running on Apollo, HP and Sun workstations.

OBJECT-ORIENTED TECHNIQUES AND TOOL INTERFACES

An important aspect of the RFT system is
how the design tools are interfaced with the
system to allow flexible communication between
the tools and other parts of the system.
Another aspect of this feature is the ease with
which new tools can be integrated into the
system.

The object-oriented implementation
architecture of the system modularizes the
system to a great extent. The architecture
hides the internal details of the objects
from other objects and all communication
takes place with a well defined interface
protocol. This makes the system highly modular
and allows the development of tailored tools
and configurations for different user groups.
Also, modifications in the internal operation
of some design tool require no modification
in the other parts of the system. For instance,
the block editor which is used to define the
design diagrams is completely separated from
the other tools. Using the basic block editor,
or some specialized form of it created by
inheritance, the wuser can access any
combination of design tools.

The interfaces to the design tools have
to be developed individually for each design
tool. The tool interfaces consist of two
parts. The declarative part, defined by expert
users, specifies the rules and models used in
the tool interface. The procedural part,
developed by software experts, implements the
functional operations needed in the interface.
The drawback of this scheme is that the user-
defined declarative knowledge of the interface
is not enough but a tailor-made procedural
part is also needed. The amount of work needed
to integrate a complicated design tool, e.g.
a simulator, into the system has been estimated
to be about one man-month.

CONVERSIONS TO SIMULATORS

In order to analyze a design the following
steps are needed:

* select a proper analysis tool
* build a model for the selected tool

* represent the model with a proper syntax

* interpret or postprocess the results

A simulator interface is usually assumed
to take care of the last two tasks. Modelling
languages and graphical representations of
simulation results are the only services
offered by most of the interfaces. Occasionally
a model editor is available that allows the
user to input a graphical representation of a
model which is then converted into a suitable
input format for the simulator.

In addition to features mentioned above
the user needs simulator user support.
Selection of parameter values and verification
of the model correctness are important details
that have to be taken care of. These kind of
services are very important to the user since
often he does not have enough experience to
perform them by himself.

RFT provides these features by using
knowledge describing the proper formation of
simulator input. The knowledge includes the
syntax description of the simulator input
language, for example the number and order of
parameters for each simulator block. 1In
addition it contains heuristic rules that are
used to suggest values for simulation
parameters. When the user wants to start a
simulation this knowledge is used first to
verify that the model defined by the user
does not contain any errors and then to
generate the input file for the simulator.

MODEL GENERATION

The techniques described in the above
section assist the user with the details of
using a simulator. If the first two tasks,
tool selection and model building, are also
automated the user does not have to pay any
attention to the execution of the analysis.
He can work with familiar design concepts and
ask the system to measure the value of some
interesting variable. The analysis tools and
models that compute the requested value are
hidden from the user. This also allows new
(and hopefully better) analysis tools to be
integrated into the environment in a way that
is transparent to the user.

The tasks of tool selection and model
building are highly knowledge-intensive.
Again we use predefined knowledge to carry
out the tasks. In RF-design there is a set of
specification measurements which are necessary
to validate that the product fulfills the
specification defined by national and
international telecommunication agreements.
Therefore, in this field, the basic analysis
tasks are well defined and known in advance
which makes the knowledge-based approach
possible. The knowledge used is divided into
measurement specific and element specific
parts. Measurement specific knowledge defines
which elements are relevant to the measurement,
the tools to be used and a formula for
combining their results. Element specific
knowledge defines the models that are used to
simulate the behavior of the elements.

The above tasks require different forms
of knowledge. Therefore a uniform knowledge
representation technique 1like the use of
rules is not sufficient in our application.
We have wused Lisp macros to develop a
definition language for conversion knowledge.
This concept has been flexible enough to
allow the design engineers themselves to define
all the necessary knowledge.

AN EXAMPLE OF A SIMULATED MEASUREMENT
To illustrate the behavior of this system

and the wusage of knowledge in different
conversions we present a simplified example

624

of system level analysis based upon the use
of TOPSIM-simulator.

I Select systeml

{ Build diagréTJ

lSelect measurement |

ISelect analysis tool|

| Convert to tool conceptsl |

lConvert to tool input and initialize|

|
|
|
I
r |
|
|
I

I

IRead and interpret results]

|
|
|
|Tool invocationl I
|
l

’ Study results and modify I

Figure 2. The subtask needed to perform a
simulated measurement.

Fig. 2 represents the subtasks that are
needed to perform a simulated measurement.
The user inputs the design diagram and selects
the measurement he wants the system to
simulate. The routine tasks are carried out
automatically by the computer. The computer
also performs error checking during the whole
operation in order to find possible design
errors and thus avoid erroneous and misleading
results.

The first task is to specify what kind
of system is under development. The
specifications of mobile telephones vary in
different countries and in different networks.
The selected system type defines requirements
for the simulated measurements.

The actual design is done by the user,
that is, he defines the topology of the design
and specifies parameters for each block. In
this phase the system already performs some
crude error checking in order to notify the
designer of possible errors as early as
possible. However, comprehensive error checking
is impossible since the user may decide not
to define values for all parameters at this
stage. As certain simulated measurements do
not use all parameter values this is acceptable
and errors from missing parameter values can
only be found in later stages of the process.

(defsimulation Co_channel_rejection
:target topsim
:source source_1l

:measurements ((perspe :nfft 1000
:fscale 10.0

skum 2)
(powmet :t0 0.1))

:patterns-and-processing-rules

((s7 pattern
(input mixer))
(;; pattern

(input output)

; processing rules

(band_pass_filter

limiter_ amplifier

amplifier

fm_modulator))))

’

Figure 3. An example of measurement specific

knowledge

Once the user has selected what kind of
measurement he wants the system to perform it
decides what is the necessary tool to do it.
The definition of Fig. 3 specifies that the
analysis is to be performed with the TOPSIM-
simulator and defines what measurements the
simulator should do. It also defines what
kind of input signal is to be used and what
components are relevant for the analysis.

The next step is to build the simulation
model by converting the system level concepts
to the corresponding simulator concepts. The
conversion is not a one-to-one mapping. Often
a number of ideal simulator blocks are needed
to model the behavior of a non-ideal component.
On the other hand, some functional level
blocks can be irrelevant for the selected
measurement and can be eliminated to simplify
the model. Fig. 4 represents the conversion
rule for a mixer and different models for its
simulation.

The generated simulator model has to be
further converted to a suitable input file
for the simulator. During the conversion a
number of additional checks are performed
that concentrate on the dependencies between
the parameter values and the signal types.
For instance, TOPSIM requires some signals to
have a particular type. The type of a signal
is determined at run-time by a threshold value
which depends on the simulation parameters.
An illegal signal type leads to an error
which is noticed only at run-time. To find
this error before simulation, the values of
signal types are estimated and propagated
through the diagram to make sure that proper
signal types are used.

625

Conversion rule for Mixer
fconversion Mixer
(if block_type
;7 simulate mixer using a table
(progn (elements (bpnonl :a block_type
:bkoff 0.0)
(lomult))
(connections (bpnonl lomult)))
(if noise_figure
;; simulate noisy behavior
(progn (elements
(lomult)
(nbwn :ix 1
:snr noise_figure
:£0 upper_ rf_ freq)
(bpsum :f0 upper rf freq))
(connections (nbwn bpsum)
(bpsum lomult)))

Pr
(de

;; ideal mixer
(elements (lomult)))))

(a) (b)
oS ‘ ! Lo b Lo
ES =
@ by |
(c) (d)
iGAIN HPSL:M %)-—;%anu"uj foszn H&,’;T__!

ban |

NBVNV ‘ GAIN]

Figure 4. The use of a (simplified) conversion
rule to convert mixer to TOPSIM-level. (a)
original functional level diagram (b) TOPSIM-
diagram of a mixer whose behavior has been
measured (c) TOPSIM-diagram of a noisy mixer
(d) TOPSIM-diagram of an ideal mixer.

Most of the knowledge needed for the
conversion is stored in the definition of
simulator blocks. An example definition of a
simulator block ampmod is in Fig. 5.

(def-top-element ampmod
:document "AMPMOD simulates an analog
amplitude modulator."

:class modem

:inputs baseband

toutputs analytic

tattributes

((f0 nil frequency "carrier frequency")
(amp 1 amplitude "carrier amplitude")
(pha 0 phase "carrier phase in radians")
(sens 1 am sensitivity "sensitivity")
(amean 1 voltage "DC component"))

:constraints

("f0 > 1.0/(5.0*delt)"))

Figure 5. An example component knowledge

definition

The block has 5 attributes: £0, amp,
pha, sens and amean. Each attribute has a
name, default value, attribute type and help
text. The attribute types are defined in a
separate file and consist of value ranges,
default units and alternative unit fields.

Input and output type information is
used to check the consistency of connected
ports. The constraints field is used for
error checking to find illegal parameter value
combinations. Some components have additional
keywords describing exceptions to the normal
use of the block, such as signal type
modification rules or reversed parameter
order in the simulator input.

Once the conversion 1is successfully
completed the simulator is started. When the
simulation results are ready they are read
back to RFT and displayed to the user in a
suitable format.

As the above example shows the conversion
is divided into two separate stages: conversion
to the simulator level and conversion from
the simulator level to the input syntax of
the simulator. The simulator level
representation can be manipulated through the
graphical interface in the same way as the
original functional level diagram. This
organization has made it possible to use the
simulator as a separate tool through the
graphical interface. In specification
measurements this feature is useful in the
development of the conversion knowledge. Also
this makes it possible for the users to operate
with the simulator only. In that case they
naturally need more expertise but can perform
more flexible simulations.

DESIGN OPTIMIZATION AND RULE-BASED DESIGN
SYNTHESIS

The above tools provide a way to analyze
the design and verify whether or not it
fulfills a given specification. They eliminate
design routines and in that way encourage
users to study more design alternatives.
However, they do not give any hints of how to
change the design to satisfy the
specifications. A number of experimental
systems have recently addressed this question,
above all in VLSI design [8,9,10]. Unlike
most of them we are not attempting to fully
automate the design synthesis since complete
automation of complex design tasks is not
possible with current technology [11]. Instead,
we provide the users some tools which suggest
modifications to certain parts of the design.
These synthesis tools are integrated into the
design environment in the same way as the
analysis tools. The goal of this organization
is a cooperative system which couples the

designer’s judgement with computer’s
capabilities.
Design optimization

In RFT, mathematical optimization
techniques are used to suggest values for
some design parameters. The use of

optimization algorithm as part of a knowledge-
based system requires some properties from
the algorithm:

626

i) The algorithm should be robust since
the problem may not be properly
formulated. Especially infeasible problems
are often encountered and the system
should be able to recover from these.

ii) The algorithm should be able to use
other tools in the environment to compute
the values of objective and constraint
functions.

iii) The results of the algorithm do not
have to be very accurate since they are
viewed as guidelines. Moreover, highly
accurate results are superfluous because
of tolerances in manufacturing.

we have used the simulated
annealing algorithm [12] to solve the
optimization problems. The benefits of this
algorithm are that it is very robust and not
easily mislead by local minima (requirement
i). The implementation of the algorithm is
simple and therefore is has been easily
implemented as part of the RFT framework in
such a way that it can use all services
provided by the environment (requirement ii).
This allows the values of the constraint
equations to be computed using the normal
analysis routines of RFT, and all modifications
in analysis ©routines are automatically
reflected to the optimization part as well.
The main drawback of the algorithm is the
large number of iterations needed which results
in long execution times. However, the execution
times can be reduced when highly accurate
results are not needed.

In RFT,

Rule-based design

Another approach is to use expert system
techniques. This is more general than
optimization since no exact mathematical
problem formulation is necessary. Here again
the problem is the integration of the design
rule-base with other parts of the system. In
order to achieve the necessary flexibility we
have not used any inference engine but compiled
the rules to Lisp-functions. This approach of
rule compilation allows us to complement the
rules with arbitrary Lisp code. This is needed
for procedural control structures and for the
cooperation of the rule-base with the user
interface and with other design tools.

So far only one small rule-base has been
implemented with this feature. 1In this
application rule-based design approach seems
to be less useful than optimization since a
large number of rules are needed for a
relatively simple design task. To be really
useful a large number of rule-bases of this
size are needed, the development of which
requires considerable work from the experts.

PRACTICAL EXPERIENCES

The system is currently in field-testing
in several design groups at Nokia Corporation.
Objective evaluation of the system performance
is difficult since the quality of designs
depends on many factors which are difficult to
measure and compare. The same applies to
design times since no studies were conducted
before the system was delivered. The subjective

experiences of the design engineers suggest
major speed-ups in design times and an
increase in the quality of the designs. The
improvements result largely from elimination
of routine tasks, from the detection of design

errors in early stages of the design, and
from the increased use of analysis and
simulation tools.

When the system development and
maintenance is concerned, several problems

are evident. The integration of new tools
into the design environment is not easy. The
amount of work (about one man-month) and the
need of a software specialist do not allow
flexible enough integration of new tools and
thus a continuous evolution of the environment.
However, this seems to be a difficult problem
especially when we do not want to set any
strong requirements to the tools that can be
integrated into the system. A partial solution
to this problem would be a definition language
that allows textual references to the topology
of the design diagram. This feature would
also be useful in the design rule-bases so
that the rule-bases can access the design
diagrams.

CONCLUSIONS AND FUTURE WORK

The above techniques have been applied
in the development of a system for the design
of mobile telephones. The resulting RFT-system
offers easy access to different design tools
as well as design synthesis options. The
graphical interface of the system allows
users to work with familiar design concepts
and the tool-specific knowledge of the system
takes care of necessary conversions. Although
our application, RF-design, is a highly
specialized field we believe that similar
solutions could also be successfully used in
other design and problem solving tasks.

The future work related to this research
can be divided into two categories. First the
continuous development of the basic framework
and research on techniques that make the
environment more easy to use and maintain.
For instance, the use of object databases and
techniques to facilitate the maintenance of
the environment. Second, the development of
new tools to be added into the framework.
These include especially tools for design
synthesis and for design diagnosis.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Nokia-
Mobira for design expertise and funding. This
work was also partially supported by Finnish
Academy.

REFERENCES

1. Ketonen, T., Lounamaa, P. and Nurminen,
J. K., "An Electronic Design CAD System
Combining Knowledge-based Techniques
with Optimization and Simulation," in
Gero, J. S. (eds.), Artificial
Intelligence in Engineering: Design,
Computational Mechanics Publications,
Southampton, U.K., 1988, pp. 101-118.

627

10.

11.

12.

Nurminen,
Numeric
Systems:

J. K., "Coupling Symbolic and
Computing in Knowledge-Based
An Application to Electronics
Design," Licentiate’s thesis, Systems
Analysis Laboratory, Faculty of
Information Technology, Helsinki
University of Technology, 1989.

Ketonen, T. and Nurminen J. K., "An
Intelligent Design and Simulation
Environment," in Proceedings of the 1989
European Simulation Multiconference,
Rome, Italy, June, 1989, pp. 201-205.

Ketonen, T. and Nurminen J. K., "Combining
Symbolic Computing with Conventional
Design and Analysis Techniques," in
Proceedings of the Second Scandinavian
Conference on Artificial Intelligence,
Tampere, Finland, June, 1989, pp. 824-835.

Kitzmiller, C. T. and Kowalik, J. S.,
"Workshop report: Coupling Symbolic and
Numeric Computing in Knowledge-Based
Systems," AI Magazine, Summer, 1987, pp.
85-90.

"TOPSIM III User'’s manual", Torino
Polytechnico, 1983,

Heikkila, P., Valtonen, M. and Pohjonen
H., "Automated Dimensioning of MOS
Transistors without Using Topology-
Specific Explicit Formulas," in the

Proceedings of the 1989 ISCAS, Portland,

Oregon, May, 1989.

Brewer, F. and Gajski, D., "An Expert-
System Paradigm for Design," in
proceedings of the 23rd Annual Design
Automation Conference, June, 1986, pp.
62-68.

Mitchell, T. M., Steinberg, L. I. and
Shulman, J., "A Knowledge-Based Approach

to Design," IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-
7(5), 1985, pp. 502-510.

Subrahmanyam, P. A., "Synapse: An Expert
System for VLSI Design," IEEE Computer,
July, 1986, pp. 78-89.

Mitchell, T. and Mostow, J., "Artificial
Intelligence and Design," Sixth National
Conference on Artificial Intelligence,
Conference Tutorial Program, July, 1987.

Press, W. H., Flannery, B. P., Teukolsky,
S. A., and Vetterling, W. T., Numerical
Recipes The Art of Scientific Computing,
Cambridge University Press, 1986.

	Copyright: © 1989 The Society for Modeling and Simulation International (SCS). Reprinted with permission from Proceedings of the 3rd European
	Copyright 2: Simulation Congress. Edinburgh, Scotland, pages 622-627.

