
Evolution of a Software Component – Experiences with a Network Editor

Component

Jyrki Akkanen

Nokia Research Center
P.O.Box 407, FIN-00045
NOKIA GROUP, Finland
jyrki.akkanen@nokia.com
+358 7180 36649 / +358

7180 36229

Attila J. Kiss

Nokia Research Center
Hungary, 1092, Budapest,

Köztelek utca 6, C-528
attila.kiss@nokia.com

+36 20 9849 324 / +36 20
963 8405

Jukka K. Nurminen

Nokia Research Center
P.O.Box 407, FIN-00045
NOKIA GROUP, Finland

jukka.k.nurminen@nokia.com
+358 7180 36442 / +358

7180 36229

ABSTRACT

Even though the benefits of component-based software
development are widely accepted, they are easily

overestimated. To provide a firmer basis for the general

discussion we describe our real life experiences with a

software component. Having a lifetime of a whole decade

the component has evolved from a class library to an
independent component. In this paper we focus on the

major evolution steps, their rational, and their outcomes,

hoping that this gives some relevant insight to the issues

that are important for software component evolution and

maintenance. Surprisingly often the lessons learned have

little to do with the hot topics of software technology that
are being marketed. We discuss the risks attached to

component selection, the usage of a shared platform for a

product family, and the strengths and weaknesses of

application frameworks and components. We also

comment practical issues in designing and implementing

major architectural changes.

1. INTRODUCTION

The component-based software development has been a

fashionable buzzword in the software community. The
advocates of the new component technologies often cite a

long list of benefits in development time, code reuse, ease

of maintenance and other areas. To provide a firmer basis

for this discussion we, in this paper, describe our

experiences with using a software component in real life.

The component was initially developed around ten years

ago and has gone through major evolution steps during its

lifetime. We will be focusing on these steps, their rational,

and their outcomes. By presenting the reality of the

software component evolution and sharing our

experiences we hope that we are able to provide some

relevant insight to the issues that are important for
software component evolution and maintenance.

Surprisingly often the lessons learned have little to do

with the hot topics of software technology that are being

marketed.

(Voas, 1998) gives an overview of the maintenance

challenges raised by component-based development

suggesting the need to rethink our software maintenance

strategies. (Lehman and Ramil, 2000) analyse laws of

software evolution in the context of component-based
software engineering. (Crnkovic and Larsson, 2000) is a

practical case study somewhat similar to our paper about

the use and evolution of a component-based system. The

domain of that paper is industrial process control where

the requirements especially for reliability are extremely

high. (Favre et al., 2001) discusses some issues how
component-based techniques affect software

comprehension and evolution. In particular, it focuses on

using a meta-model to help in software understanding.

(Pighin, 2001) discusses a methodology to create a

component catalog for reuse and maintenance purposes.

(Wu et al., 2000) proposes a technique based on static
analysis for the maintenance of component-based

software.

The rest of the paper is structured in the following way. In
section 2 we briefly describe the network editor

component. In section 3 we cover the major evolution

steps in its history. In section 4 we focus on some key

issues of the evolution, on the lessons learned, and on

what might be practical issues to consider. In section 5 we

summarize our main conclusions.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

2. THE NETWORK EDITOR

The component we are focusing on is an in-house

developed network editor, which has been used in several

commercial products and internal applications within

Nokia. The initial goal was to create a re-usable class

library, called Interactive Graph Editor (IGE), that could

be used in applications requiring network visualization
and interactive network editing. The library was written in

C++ and targeted mainly for the PC/Windows

environment although it was meant to be platform

independent.

The initial, experimental versions of IGE (Toivonen,

1990) were built 1990 on Glockenspiel Common View,

one of the first commercial C++ libraries for developing

applications with graphical user interface in MS-Windows

environment. However, for the subsequent releases of the

framework for actual applications, we soon adopted
another commercial library, C++/Views from CNS. Both

application frameworks followed the model-view-

controller paradigm copied from Smalltalk, hiding the

operating system of the computer behind its own layer of

functionality. The programmer did therefore not need to
know how to program with Microsoft Windows but it was

enough to know the C++/Views library. The added

benefit of this was that the programs were (mostly)

platform independent and could be ported with reasonable

effort to other operating systems like OS/2 and

OSF/Motif.

In 1997, the component and related framework won 3rd

prize at Object World OO awards, in the category of

"Best application utilizing reusable components leveraged

from or in use in other projects."

Figure 1 shows some of the applications that have been

developed using the network editor component. The

boxes with the thick border represent commercial

applications; the rest of the applications have been for
Nokia internal use. The arrows represent code that was

reused in subsequent framework or application.

The applications cover a range of areas: circuit design

(NASSE), software engineering (KISS, TDE, Mermaid),
telecom network planning (NPS/10, FixNet, Assi), service

creation for intelligent networks (NSE), IP network

modeling (Calipran), and wireless router network

management (RMS). Some of the applications were

developed from scratch using the network editor
component and its related framework as a basis (NASSE,

KISS, NPS/10, NSE, Calipran, and RMS). Other

applications took an existing application as a starting

point and modified that to reach the goal (Mermaid, TDE,

FixNet, and Assi).

Network Editor Applications

RMS

Calipran

Assi

FixNet
NPS/10 1.0

NSE
TDE

Mermaid
KISS

NASSE

NPS/10 4.0

NPS/10 5.0

IGE Framework

IGE Component

MFC Component

MFC Component 2

NPS/10 3.2Mixed Framework

Figure 1 Applications using the network editor

Figure 1 also shows the major generations of the network
editor component and associated application architecture

(gray boxes on the left). In the following we will follow

this development which occurred mostly along the

NPS/10 application (Akkanen and Nurminen, 2001;

Nokia Networks, 1999). Being one of the first

applications using the network editor component its
development started in 1992 and it has grown from a

small drafting tool to full-scale detailed transmission

network planning tool. Since 1996 it has been available as

a commercial product. New functionality is still actively

developed to the tool to keep up with the new demands

and technologies in network planning. Figure 2 shows an

example screenshot of the NPS/10 application.

Figure 2 Sample screen of NPS/10 network planning tool

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

3. MAJOR DEVELOPMENT STEPS

Table I summarizes the major technical steps in the

history of the network editor component. Every major

modification in the network editor has also been a major

modification in the software architecture.

Table I . Key development steps

Date Network

Editor

Features Applications

12/92 IGE
Framework

Windows 3.1,
OSF/Motif

Borland C++,

C++/Views

Nasse, KISS,
NSE, NPS/10

1.0

6/96 Mixed

Framework v1

Major architectural

renewal

C++ templates
introduced

NPS/10 3.2

8/97 Mixed

Framework v2

Windows NT 4.0

Microsoft Visual C++

NPS/10 3.5

10/98 IGE
Component

Major architectural
renewal

STL introduced

NPS/10 4.0

12/99 MFC

Component v1

MFC, Stingray

Objective Views

NPS/10 5.0

12/00 MFC

Component v2

Strict encapsulation

and interface changes

RMS,

Calipran

3.1 IGE FRAMEWORK

In the early years of the network editor the idea of

components in software had not yet fully matured and the

best one could hope for was a re-usable, object-oriented

application framework. In our case the IGE framework
provided support for the network presentation in a data

model and multiple graphical views to the data. That was

appropriate and adequate for multiple applications

requiring graphical presentation of networks.

We took full advantage from the cross-platform

capabilities of the framework. While most applications

were indeed developed in MS-Windows, there were a

couple of OSF/Motif applications and even one

application, which was ported to both platforms.

3.2 MIXED FRAMEWORK

Eventually, however, we noticed that the IGE framework

could no longer support all the new application

requirements. The data model of NPS/10 application had

grown and was now more a stack of related networks

rather than a single network. In addition, the user-
interface design was rather rigid and did not completely

satisfy our requirements. The framework, which once was

a benefit, began to be a burden and restrict our work

rather than help it. Another driving force for renewing the

architecture was the fact that Microsoft was actively
updating the GUI features in its Windows operating

system and our library was gradually dropping out of the

pace. We began to foresee that some day we might need

to change the GUI library.

This triggered a long sequence of major software

architecture improvements in the NPS/10 tool. Our first

target was to employ a clean data model and to use the

IGE framework only for the network views. This was not

easy because IGE, being designed as a complete

framework, persistently resisted our attempts to use only a
part of it. After a lot of struggle we were able to create a

satisfactory mixed framework, where the influence of the

old framework was relatively limited.

At this point we started to introduce some more modern
C++ language as well e.g. template-based collections. We

knew that STL existed, but had no implementation that

our compiler would have supported.

3.3 MIXED FRAMEWORK V2

Despite all the similarities in the operating systems, the
need to move from the 16-bit Windows 3.1 to 32-bit NT

4.0 was not a small step. The essential difference was not

at the operating system level, but the fact that it required

us to update all our basic libraries (C++/Views and IGE)

to more recent versions. Even though newer versions

typically try to be compatible with the old, there were lots
of small differences and improvements, which gave us a

lot of work. Furthermore, we also had to change the

compiler to Microsoft Visual C++ that gave us some extra

struggle. The compilers did not very smoothly accept all

the newer C++ features we were using, and what was

acceptable varied from vendor to vendor.

At this point we noticed that all our active development

was in the same platform, and thus we decided to give up

the goal of targeting multiple platforms to take advantage
of the special features of the Microsoft Windows

operating system.

3.4 IGE COMPONENT

The mixed framework served us for a while even though

we all the time knew it was far from ideal. We were still
rather dependent on the IGE platform and, due to some

short cuts, had managed to mess up our data model. We

saw that even though the previous architecture fix was a

major operation, it still was only a first step in a long run.

At this time we considered starting to use components

(component-based software had been available a couple

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

of years already) and made some long-term plans and

defined goals for the further architecture work.

This time we had matured enough to make the final step

with the network editor: to encapsulate it as a component.

From the point of the old IGE framework this required a

little abuse: we had to create tiny "fake applications"
inside the network view component to fool the framework

to think that it still was a complete application and not just

a single network view. But there it was: a network view

behind a nice, well-defined interface.

3.5 MFC COMPONENT

We were now rather satisfied with our architecture, but

more and more annoyed with our terribly obsolete GUI

library. We selected a step to the mainstream: picked

MFC as the basic GUI library and took Stingray Objective

Views as the graphical view component. After the basic

work for investigating how to replace our component with
the Stingray component was done, converting the whole

application (which had grown already to a size of over

400 kLoc) went rather quickly. The most demanding task

was to convert all dialogs.

3.6 MFC COMPONENT V2

After using MFC and Stingray for a while we, once again,

noticed that there was room for some improvements. Now

the major problem was that the new component was not

very strictly encapsulated. We had tried to avoid large

risks in the adoption of the Stingray component by

following the "sample" patterns rather than trying out
something of our own. The side effect of this was that our

application became dependent on the internal structure of

the component. Once we had gathered enough experience

and knowledge about our new libraries, the dependencies

were eliminated and the component interface changed.

4. KEY ISSUES AND LESSONS

LEARNED

4.1 VENDOR INSTABILITY

The selection of the C++/Views as the base GUI library

was based on an evaluation of available tools on the

market. At that time the offering was quite limited and the
subsequent market leaders, like Microsoft MFC, became

available only a few years after the selection had been

made. From our point the market situation changed

unfavorably, and support and maintenance of C++/Views

became a problem. The ownership of C++/Views moved

from its original developers in CNS to Liant and later to
Intersolv, which eventually decided to close down the

support of the product. Recently, Stanton Consultancy

Limited in UK has taken up the support and recreated the

product.

The lessons from this are twofold. First, selecting a

mainstream product with a wide user group helps to

guarantee a steady flow of bug fixes, new features, and

other maintenance. Secondly, since this is not always
possible and market situations are changing, it is useful to

try to limit dependencies on 3rd party libraries in the code.

This implies extra effort: intermediate layers between

actual application and underlying library and/or

proprietary software architectures. In the long run this can

pay off when moving the code to a new platform.

4.2 IMPORTANCE OF ACCESS TO SOURCE

CODE

As the support for the underlying libraries in our case was
quite poor we ended up fixing many bugs in the libraries

by ourselves as well as creating support for missing

features, e.g. new controls, copy/paste, printing support.

Access to the source code of C++/Views was essential for

this.

Access to source code is important not only to fix the

code but also to debug any problems. With source code

available it is possible to follow with a debugger the

program execution not only in the application code but
also on the lower layer code. In our case the source code

was also the most reliable documentation that was

available.

4.3 SHARING THE CODE BETWEEN THE

DIFFERENT APPLICATIONS

The obvious benefit of using a component by multiple

applications is that the same code is shared and reused

resulting into a product family concept. With our

experience this is especially beneficial at the early stage
of the development since it allows fast creation of a first

working prototype which can be incrementally developed

further.

Contrary to a genuine product family we ended up into a
situation where each application development project

used its own version of the network editor component.

This situation arose mainly because there was not enough

dedicated developers to handle the component

maintenance. Instead, each application project created
small fixes and enhancements to the component.

Occasionally the changes were collected and merged to

the master component, and when the schedules of the

application projects permitted they took into use the

resulting newer versions of the network editor. However,

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

this resulted into divergence especially as the number of

people in the application projects increased.

Probably the divergence could have been avoided or

limited by having a stronger development group handling

the component development and maintenance. In any case

the cost of updating a framework and taking the newer

framework version into use is not negligible.

4.4 FRAMEWORKS VS. COMPONENTS

As the framework forces the application to be structured

to follow a certain set of patterns the risk of major

architectural failures is decreased. This allows the
developers to focus on the features needed by the

application, get the application faster into use, and, at the

same time, to learn to understand better what are the key

architectural requirements.

In our case, in the longer run, the use of a rigid framework

became a burden. Finally it was not possible to

implement new features without changing the architecture

of the framework. Even with the most successful and

widely used frameworks, users tend to run into problems

when they start using the framework against the original

design.

Our lesson is again twofold. Developers need well-tested

frameworks to quickly create applications and to avoid

major architectural risks. On the other hand, they need
independent components for better reuse and adaptability

to changing situations.

4.5 EXECUTING MAJOR ARCHITECTURAL

CHANGES

We made several major architectural improvement steps

during our long software project and can notice that, to

our satisfaction, all of them were successful. In our case

they key to success was careful planning and limiting the

scope of the actual changes to minimum.

The architectural changes were carefully designed. We

always started by identifying the major troubles in our

current architecture and sorting out nice solutions to
practical problems. We tended to take care that we all the

time have a long-term goal in which we are going so that

our improvements were individual steps towards the same

direction. However, after getting a clear understanding

about what we want we always had to return back to

reality: to see what is actually feasible concerning the
schedule of our next release. In most cases the bottom line

was that we could fix the most damaging troubles, but not

much more. (This forced us e.g. to drop the ideas about

using explicit component technologies like COM). In this

sense even the major architectural changes can more be

seen as steps in continuous refactoring process rather than

as complete rewriting of the application.

 The rest of the preparation work consisted of coding

some key pieces, making migration plans, and writing

directions for developers who finally executed the
architecture update. Because of the careful preparation the

actual architecture renewal did not shift our schedule

more than a couple of months, which was tolerable, taking

in account that two months is easily lost in bug-hunting of

a messy application.

Designing architectural changes is not fulltime work and

can't be isolated from application development. In our

case the lead developer was considering the architectural

issues in parallel besides his other tasks. Participating in

application development provided important insight about
what kind of new user requirements typically come up,

what are the hard tasks for the software developers, and

how these issues can be helped by proper architectural

changes.

One important lesson for us, which we confronted every

time we improved our architecture, was that, however

well the architecture has been designed, something

always goes wrong. After the major troubles are out of the

way the next troubles become visible. And sometimes the
solutions are not so good after all, and show their nature

the day the requirements for the next release are available.

This taught us not to try to be too perfect: a working

application, even with shortcomings, is better than no

application. Knowing the basic refactoring techniques

(Fowler, 2000) allowed us to make minor fixes in

architecture on the fly.

Another lesson was not to try to achieve too much when

maintaining an existing application. The customers want

new features and better usability and are not very willing
to invest in architectural issues: investing more than, say 5

– 10 % of the costs in architecture is not possible. The

tight budget usually implies that development has to

concentrate on the most important issues where it is

expected to get investment back very soon.

4.6 INTERFACES CAN BE AFFECTED BY

COMPONENT CHANGES

In theory a well-defined interface hides the details of a
component in such a way that changing the component

implementation should not affect its users. Our experience

suggests that this is not completely true when a bigger

change in the component implementation is needed.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

When moving from IGE and C++/Views to the

Stingray/MFC library we tried to hide the component
change from the application by providing the same

interface to the applications in both cases. Unfortunately

the underlying platform with new graphical features

required expanding the component functionality. The

interface to the component had to be changed, which

further propagated changes in the application.

Furthermore, a new component implementation is always

unknown to the developers, and thus finding the correct

patterns and interfaces to join it in the application is far

from trivial. Our experience was that relying on the
component vendor's suggestions and examples does not

necessarily lead to a good result.

The lesson is that the independent development of

component and embedding application is not always
possible. Internal changes in the component can propagate

through the interface to the application.

5. CONCLUSIONS

In this paper we have discussed the evolution of a

software component and how it has gradually developed

from an application framework to a proper component.

The evolution has been a result of new application

requirements causing changes to the software structure
and consequently to the used components. This kind of

process can be slow: introducing major architectural

changes can take a few years to do in parallel with the

normal application development.

Our main experiences are:

� Component selection is always a risk because the

strengths of different technologies and vendors are

constantly changing. The risk can be reduced by
mainstream vendor selection, proper architectural

solutions, and by having access to the source code of

the component.

� Using the same platform for a product family is
beneficial especially at the early development stage.

Later the applications tend to branch off to different

directions.

� Both frameworks and components have their pros

and cons. A mixture of both would be ideal.

� A practical way to implement architectural changes is

with small steps, aiming to a bigger goal in the
horizon, and by learning from previous steps and

from new application requirements.

� There is no perfect architecture. Accepting this and

using it in project planning is important.

� Components are useful even if they do not

completely fulfil their promise. Component changes

frequently cause interface changes.

Our experience has shown that independent software

components very naturally grow up from architectural

needs, but cannot be used effectively without a supporting

application framework. We have as well seen that

practical needs are the best guides in design work,
concerning software architectures, frameworks and

components. We are convinced that, while the

components are gradually losing their novelty and

becoming everyday tools, there is still a lot to learn how

architectures and frameworks can support their efficient

use.

6. ACKNOWLEDGEMENTS

We are grateful to Nokia Networks for their support and

funding.

REFERENCES

Akkanen, J., Nurminen, J. K, 2001. Case-study of evolution of

routing algorithms in a network planning tool, Journal of

Systems and Software (58), 181-198.

Crnkovic, I., Larsson, M., A case study: demands on

component-based development, in Proceedings of the 2000

International Conference on Software Engineering

Favre, J.-M., Duclos, F., Estublier, J., Sanlaville, R., Auffret, J.-

J., Reverse engineering a large component-based software

product, in Fifth European Conference on Software Maintenance

and Reengineering, 2001.

Fowler, M., 2000. Refactoring: improving the design of existing

code, Addison-Wesley.

Lehman M.M., Ramil J.F., 2000. Software evolution in the age

of component-based software engineering, IEEE Proceedings on

Software 147(6), 249-255.

Nokia Networks, 1999. NPS/10, Computer software,

Pighin, M., A new methodology for component reuse and

maintenance, in Fifth European Conference on Software

Maintenance and Reengineering, 2001.

Toivonen, H. T. T. 1990. An Interactive Graph Editor: Network

Managing and Graph Layout. Report-C-1990, Department of

Computer Science, University of Helsinki.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Voas, J., 1998. Maintaining component-based systems, IEEE

Software 15 (4), 22-27.

Wu, Y., Pan, D., Chen, M-H, Techniques of maintaining

evolving component-based software, in International Conference

on Software Maintenance, 2000

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank
	Copyright: © 2002 IEEE. Reprinted with permission from Proceedings of the 6th European Conference on Software Maintenance and Reengineering. Budapest, Hungary,
	Copyright 2: pages 119-125.

