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Abstract

This work is motivated by recent experiments studying superfluid 3He inside porous aerogel. Using the homogeneous
scattering model, we calculate the pairing amplitude and the superfluid density for the A and B phases at all
temperatures. At high temperatures the results are in agreement with simpler calculations based on the Gin-
zburg—Landau theory. We also study the effect of large impurities in the B phase. We find that higher scattering channels
give essentially the same results as obtained by limiting to s-wave scattering. ( 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Recent experiments [1,2] have shown that the
superfluid transition of 3He occurs not only in pure
helium, but also in very porous aerogel, where 2%
of the volume is filled with aerogel. It was found
that the superfluid transition temperature ¹

#
is

reduced from the transition temperature in pure
3He, ¹

#0
. Other measured quantities include the

pairing amplitude D and the superfluid density o
4
.

Different models have been studied in order to
explain theoretically the experimental observations
[3]. The simplest one of these is the homogeneous
scattering model (HSM).

The first calculations applying the HSM to 3He
were done in the Ginzburg—Landau (GL) region,

i.e. in the temperature region just below ¹
#
[3,4]. It

was already visible in these results that the HSM is
in disagreement with experiments. There remained,
however, two uncertainties. Firstly, it was a priori
possible that the results in the GL region were
misleading and at lower temperature the HSM
would predict something that strongly deviates
from the extrapolation of the GL results. Secondly,
the first calculations took into account only s-wave
scattering (l"0). It is known that the aerogel
consists of strands, whose diameter (+3 nm) is
roughly four times the Fermi wavelength of the
quasiparticles. Thus most of the scattering takes
place via higher partial waves l'0, and it was not
known to us if this would radically alter the s-wave
prediction. The purpose of this paper was to study
these two points.

A further motivation for the present calculations
is that the HSM, alhough in disagreement
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with experiments, has such basic simplicity that it
naturally forms the first step in the process of devel-
oping more sophisticated theories [3]. Different
applications of the HSM in 3He are given in Refs.
[5—8].

Firstly, we calculate the pairing amplitude D in
the B phase including all scattering partial waves.
Secondly, limiting to the case of s-wave scattering,
we calculate D in the A phase, and the superfluid
density o

4
for both A and B phases. These calcu-

lations are made at all temperatures ¹(¹
#
. We

find that the GL theory gives good approximate
results under a wide temperature range. Concern-
ing higher partial waves, we conclude that a realis-
tic choice corresponds to a result approximately
half way between the Born and unitarity limits of
s-wave scattering.

Part of the results in this paper has been pub-
lished previously. The impure B phase is analogous
to the case of magnetic impurities in s-wave super-
conductors [9]. This has been studied numerically
in Ref. [10] limiting to the Born approximation.
The anisotropy of the A phase has been studied by
Choi and Muzikar in connection with unconven-
tional superfluidity [11]. The superfluid density for
both A and B phases has been recently calculated
by Higashitani [8]. All these works are limited to
s-wave scattering.

The calculations are done using the quasiclassi-
cal theory, which is briefly discussed in Section 2.
The calculation of the pairing amplitude is presented
in Section 3 and the superfluid density in Section 4.

2. Quasiclassical theory

We use the quasiclassical theory for impure
weak-coupling p-wave superfluid. Some basic as-
sumptions of this theory are discussed in Ref. [4].
In this section we write down the general equations
of this theory. The derivation of these equations is
similar as presented by Serene and Rainer [12] in
the pure case. In addition one needs to use aver-
aging over impurity locations and some basics of
scattering theory [13]. Although the derivation re-
quires some care, it will not be presented here.

An important intermediate quantity in the quasi-
classical theory is the propagator gy (kK , r, e

m
). It is

a 4]4 matrix, which can be thought of as a 2]2
Nambu matrix

gy "A
g#u ·r

1
( f#f · r

1
)ip

1 2
ip
1 2

( fI#fI · r
1
) gJ !p

1 2
uJ ·r

1
p
1 2
B, (1)

where each of the four elements is a 2]2 spin
matrix. Here p

1 i
denote the Pauli matrices in the

spin submatrix, and qy
i
are the same thing as Nambu

matrices. The arguments of the propagator
gy (kK , r, e

m
) are the direction of the momentum kK , the

location r, and the Matsubara frequencies
e
m
"2pk

B
¹(m!1

2
), where m is an integer. The

propagator is determined from the Eilenberger
equation and the normalization condition

[ieqy
3
!ly!oy !Dx , gy ]#i+v

F
kK )+rgy "0 (2)

gy gy "!1. (3)

The quantities ly , oy , and Dx are defined below. Dx (kK , r)
is the Nambu-off-diagonal self-energy

Dx "A
0 D )r

1
ip
1 2

ip
1 2

D* ) r
1

0 B, (4)

where * denotes complex conjugate. In the weak-
coupling limit the order parameter D(kK , r) is deter-
mined from the self-consistency equation

D(kK , r) ln
¹

¹
c0

#pk
B
¹ +

em C
D(kK , r)
De
m
D

!3S(kK )kK @) f (kK @, r, e
m
)TkK {D"0 (5)

Here ¹
#0

is the critical temperature of pure helium,
+ em denotes the summation over all e

m
, and S2TkK {

denotes the angular average with respect to kK @. The
Fermi-liquid parameters give rise to a Nambu-
diagonal self-energy

ly"A
l#m ) r

1
0

0 lJ!p
1 2

mJ )r
1
p
1 2
B, (6)

where lJ (kK , r)"l(!kK , r) and mJ (kK , r)"l(!kK , r) are
real functions determined by equations

l(kK , r)"pk
B
¹+

em
SA4(kK · kK @)g(kK @, r, e

m
)TkK {

(7)

m(kK , r)"pk
B
¹+

em
SA!(kK · kK @)u(kK @, r, e

m
)TkK {

(8)
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Here the functions A4 and A! can be expressed in
terms of Legendre polynomials and Fermi-liquid
parameters [12].

The effect of impurities in the Eilenberger equa-
tion is taken into account by the impurity self-
energy o\ . It equals the concentration of the impu-
rities n(r) times the forward scattering ¹-matrix of
the single impurity: ox (kK , r, e

m
)"n(r)tx (kK , kK , r, e

m
). The

equation for the ¹-matrix is

tx (kK , kK @, r, e
m
)"vy (kK , kK @)

#pN
F
Svy (kK , kK A)gy (kK A, r, e

m
)tx (kK A, kK @, r, e

m
)TkK A, (9)

where 2N
F
"m

%&&
k
F
/p2+2 is the total density of

states at the Fermi surface, m
%&&

is the effective mass
and k

F
the Fermi wave vector. The mass m

3
of

a 3He atom is related to m
%&&

by m
%&&

/m
3
"1#F4

1
/3.

For nonmagnetic scattering the impurity potential
is proportional to the unit matrix: vy"v1x . A spheri-
cally symmetric potential can be represented as

v(kK , kK @)"
=
+
l/0

2l#1

4p
P
l
(kK · kK @ )v

l
, (10)

where P
l

are the Legendre polynomials, for
example P

0
(x)"1 and P

1
(x)"x. The coefficients

v
l
are related to the scattering phase shifts d

l
by

v
l
"!(4/N

F
) tan d

l
. The transport cross section in

the normal state is then given by

p
53
"

4p

k2
F

=
+
l/0

(l#1)sin2(d
l`1

!d
l
). (11)

The transport mean free path is defined by
l
53
"(np

53
)~1. In the calculation we consider d

l
and

l
53

as independent variables, which means that the
impurity density n is a dependent variable: n(d

l
, l

53
).

Another important length in the theory is the co-
herence length m

0
"+v

F
/2pk

B
¹

#0
. The principal di-

mensionless parameter in the following is m
0
/l
53
.

Very little is known about the phase shifts d
l
in

aerogel. Therefore, we consider the following model
cases. One is the Born limit, where all d

l
are as-

sumed small (d
l
@1 for all l ). Another limiting case

is that only the s-wave scattering phase shift d
0

is
nonzero. The case that sin2d

0
approaches unity

is called the unitarity limit. Still one more model is
a hard sphere of radius R. There the phase shifts are
given by tan d

l
"j

l
(k

F
R)/n

l
(k

F
R), where j

l
and n

l
are

the spherical Bessel and Neumann functions, re-
spectively. The transport cross section (11) as a
function of k

F
R is plotted in Ref. [14].

A nonzero superfluid velocity �
4
"(+/2m

3
)q

arises when the phase of the order parameter is not
constant, but has the form D(kK , r)"exp(iq · r)D(kK ).
The superfluid density is defined by o

4
"

lim
v4?0

j
4
/v

4
, where j

4
is the superfluid mass current

given by

j
s
(r)"2m

3
v
F
N

F
pk

B
¹ +

em
SkK g(kK , r, e

m
)TkK . (12)

In pure helium at zero temperature, the superfluid
density equals the total density of the liquid
o"m

3
k3
F
/3p2.

The equations above are rather general results of
the quasiclassical scattering theory. The principal
limitation for the impurity density n(r) is that it is
a smooth function on the length scale of the Fermi
wavelength j

F
"2p/k

F
[4]. However, in the follow-

ing, we restrict to the homogeneous scattering model,
where n(r) is assumed to be independent of the
location r.

3. Pairing amplitude

In this section we calculate the pairing amplitude
DDD in the case that the order parameter D(kK , r) is
independent of r. The pairing amplitude can dir-
ectly be measured by nuclear magnetic resonance
[3,4]. We note that DDD is not simply related to the
energy gap of the excitation spectrum, except in
pure superfluid.

We study both A and B phases. In the B phase
we can take D(kK )"D

B
kK . In the A phase D(kK )"

D
A
dK [(mL #inL ) ) kK ], where mL o nL . Here D

A
and

D
B

are real.
We can verify afterwards that ly"0 and the

impurity self-energy has the form

oy (kK , e
m
)"a(e

m
)1x #ib(e

m
)qy

3
#c(e

m
)Dx (kK ). (13)

The Eilenberger Eqs. (2) and (3) then allow the
solution

gy "
!ieJ qx 3#(1#c)Dx
JeJ 2#(1#c)2DDD2

, (14)

where eJ"e
m
!b.
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Fig. 1. The B-phase pairing amplitude D2
B

vs. temperature. The
six bunches of curves correspond to m

0
/l
53
"0.00, 0.05, 0.10, 0.15,

0.20, and 0.25 in the order of decreasing ¹
#
. The three types of

lines correspond to three different values of the s-wave scattering
phase shift d

0
.

3.1. B phase

For the B phase the ¹-matrix Eq. (9) can be
solved analytically for general scattering phase
shifts [12]. The calculation is similar to the one
presented in Refs. [14,15]. Requiring consistency
with oy (13), we find that eJ and c have to satisfy the
following equations:

eJ!e
m
"!

n

4p

=
+

j/1@2

1@2
+

s/~1@2

( j#1
2
)

]ImC
v
j`s

(1!ifeJ v
j~s

)

d
js

D, (15)

c"
n

4p
(1#c)f

=
+

j/1@2

1@2
+

s/~1@2

( j#1
2
)
v
j`1@2

v
j~1@2

d
js

.

(16)

Here j and s take half-integer values ( j"1
2
, 3
2
,2 ;

s"$1
2
),

d
js
"(1#ifeJ v

j`s
) (1!ifeJ v

j~s
)

#[fD
B
(1#c)]2v

j`1@2
v
j~1@2

(17)

and f"N
F
/4JeJ 2#(1#c)2D2

B
. The coefficients

eJ (e
m
)"!eJ (!e

m
) and c(e

m
)"c(!e

m
) are real. The

program is to solve Eqs. (15) and (16) together with
the self consistency equation

ln
¹

¹
#0

#2pk
B
¹ +

em;0
C

1

e
m

!

1#c

JeJ 2#(1#c)2D2
B
D"0,

(18)

which follows from Eqs. (5) and (14). We note that
limiting to s-waves scattering implies c"0 and (15)
reduces to

eJ!e
m
"

+v
F

2l
53

eJJeJ 2#D2
B

eJ 2#D2
B

cos2 d
0

. (19)

The pairing amplitude is nonzero only at temper-
atures below the superfluid transition temperature
¹

#
. This temperature is determined by the

condition

ln
¹

#
¹

#0

#2pk
B
¹ +

em;0
A

1

e
m

!

1

e
m
#+v

F
/2l

53
B"0 (20)

This relation is the same for A and B phases, and it
depends on the phase shifts d

l
only via l

53
"(np

53
)~1

(11).
We first present results for pure s-wave scatter-

ing. Fig. 1 shows the pairing amplitude in the
B phase for three values of sin2 d

0
: 0, 0.5, and 1. The

plots of D2
B

show a linear dependence on ¹ near ¹
#
.

In order to show better the scaling of D
B

with ¹
#
,

we have presented the results in a different way in
Fig. 2. There we plot the suppression factor

SD2
B
"

D2
B
(t¹

#
)

D2
B0

(t¹
#0

)
, (21)

where D2
B0

is the squared pairing amplitude in the
pure case (uppermost curve in Fig. 1). The sup-
pression factor is plotted as a function of squared
¹

#
suppression (¹2

#
/¹2

#0
) at different relative tem-

peratures t. We see that D
B

and ¹
#
are suppressed

nearly equally.
Let us consider the effect of higher partial waves

(l*1). First, we note that the results for the s-wave
Born limit are valid also in the general Born limit.
In other words, if all the phase shifts are small
(d

l
@1), D

B
is the same as plotted in Figs. 1 and 2 for

sin2 d
0
P0. We have also considered the case that
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Fig. 2. The suppression factor (21) for D2
B
. The upper lines cor-

respond to t"0.1 and the lower ones to t"1.0. The middle
solid line is for t"0.5.

several partial waves are in the unitarity limit. Nu-
merical calculations show that in this case D

B
is

rather near the s-wave unitarity limit. Thus it seems
that the s-wave Born and unitarity limits represent
the general upper and lower limits of D

B
for a

given l
53
.

We have calculated D
B

for hard spheres. For
large spheres (k

F
RA1) the results seem to be inde-

pendent of the radius. Furthermore, they are in
a range corresponding to sin2 d

0
between 0.5 and

0.7 in the s-wave approximation. (The precise cor-
respondence depends on m

0
/l
53

and t.) The fact that
the result corresponds to sin2 d

0
+1

2
might be

understood as follows. The phase shifts d
l
for hard

spheres are rather uniformly distributed for
l(k

F
R, and they vanish rapidly for larger l. As-

suming that the partial waves with l(k
F
R contrib-

ute independently from each other [which can be
only approximately valid because Eqs. (15) and (16)
couple d

l
with l"j$1

2
], they could produce an

average that is simulated by random d
0
:

Ssin2 d
0
T"1

2
.

The aerogel strands are thick in comparison to
k~1
F

. Because of the randomness of the aerogel
structure, we expect that the scattering phase shifts
are nearly randomly distributed. Therefore we ex-
pect that the results using sin2 d

0
+0.5 would be

the most relevant for comparison between theory

and experiment. We note that calculating D2 for
sin2 d

0
"1

2
differs insignificantly from the more

complicated procedure of finding the average of
D2 for a uniform distribution of d

0
.

3.2. A phase

In the A phase we limit to s-wave scattering. It
follows that c"0 and the equation for eJ is

eJ!e
m
"

+v
F

2l
53

eJ SX~1
A

T
cos2 d

0
#eJ 2SX~1

A
T2 sin2 d

0

, (22)

where X
A
"JeJ 2#D2

A
sin2 h and we use the nota-

tion S f (h)T":1
0
d(cos h) f (h). The selfconsistency

equation (5) reduces to

ln
¹

¹
#0

#2pk
B
¹ +

em;0
A

1

e
m

!

3

2T
sin2 h
X

A
UB"0, (23)

which has to be solved simultaneously with
Eq. (22). The different angular integrals in the
A phase can be calculated analytically

SX~1
A

T"D~1
A

arctan(D
A
/eJ ), (24)

SX~3
A

T"[eJ (eJ 2#D2
A
)]~1 (25)

T
sin2 h
X

A
U"

eJ
2D2

A

!

eJ 2!D2
A

2D3
A

arctan
D
A
eJ

, (26)

T
sin2 h
X3

A
U"

1

D3
A

arctan
D
A
eJ
!

eJ
D2

A
(eJ 2#D2

A
)
, (27)

T
sin4 h
X3

A
U"

eJ (3eJ 2#D2
A
)

2D4
A
(eJ 2#D2

A
)
!

3eJ 2!D2
A

2D5
A

arctan
D

A
eJ

.

(28)

The behaviour of D2
A

is very similar to the B phase.
Therefore, we only plot the suppression factor in
Fig. 3. The variation between the Born and unitar-
ity limits is slightly smaller than in the B phase.

4. Superfluid density

In order to calculate the superfluid density o
4
we

study the order parameter D(kK , r)"exp(iq · r)D(kK ).
For the propagator we make a gradient expansion
gy "gy

0
#gy

1
#2. Here gy

0
(kK , r, e

m
) is the solution

calculated in the previous section corresponding to
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Fig. 3. The suppression factor S"D2
A
(t¹

#
)/D2

A0
(t¹

#0
) for the

pairing amplitude in the A-phase. The upper lines correspond to
t"0.1 and the lower ones to t"1.0. The middle solid line is for
t"0.5.

Fig. 4. The bare superfluid density in the B-phase. The curves
correspond to m

0
/l
53
"0.00, 0.05, 0.10, 0.15, 0.20, and 0.25 in the

order of decreasing ¹
#
.

the local order parameter at r. The correction
gy
1
(kK , r, e

m
) is linear with respect to +r gy

0
. We con-

sider only s-wave scattering. It can be verified after-
wards that Dx

1
"0 and ly

1
"s+(kL · q)qy

3
, where s is

a scalar. This allows to solve the linearized equa-
tions (2) and (3). We get

gy
1
"

1

2JeJ 2#DDD2C
(v

F
#2s)+(kK · q)

JeJ 2#DDD2
gy
0
qy
3
Dx

#gy
0
oy
1
gy
0
#oy

1D. (29)

Linearizing the ¹-matrix equation (9) gives

oy
1
"

pN
F

n
oy
0
Sgy

1
Toy

0
. (30)

In both A and B phases these can be solved by
making the ansatz oy

1
(r, e

m
)"a(e

m
)Dx (q, r), where a is

scalar. The parameter s can be solved from Eq. (7).

4.1. B-phase

In the B-phase our assumption about ly
1

is exact.
The superfluid density can be written as

o
4
"

o"
4

1#1
3

F4
1
(1!o"

4
/o)

(31)

where the bare superfluid density o"
4

is given by

o"
4
"2pok

B
¹ +

em;0

D2
B
(1#s)

(eJ 2#D2
B
)3@2

. (32)

Here s is a dimensionless parameter which vanishes
in the pure limit

s"
+v

F
eJ 2

6l
53
JeJ 2#DB

[eJ 2#D2
B

cos2 d
0
]!+v

F
(3eJ 2#2D2

B
).

(33)

The same result has been obtained by Higashitani
[8].

We show here results only for the bare superfluid
density because it is independent of the Fermi-
liquid parameters. It is plotted in Fig. 4 as a func-
tion of temperature. The suppression factor
S"o"

4
(t¹

#
)/o"

40
(t¹

#0
) is shown in Fig. 5.

4.2. A-phase

In the A-phase the superfluid density depends on
an infinite number of Fermi-liquid parameters
F
l
4 with odd l [16]. In order to avoid too much

complication, we cut off all F
l
4 with l'2. An

additional complication is that there exist two
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Fig. 5. The suppression factor for bare superfluid density in the
B-phase. The upper lines correspond to t"0.1 and the lower
ones to t"1.0. The middle solid line is for t"0.5.

Fig. 6. The suppression factor S"o"
M
(t¹

#
)/o"

M0
(t¹

#0
). The upper

lines correspond to t"0.1 and the lower ones to t"1.0. The
middle solid line is for t"0.5.

eigenvalues for the superfluid density depending on
the direction of the superfluid velocity relative to
lK"mL ]nL . The eigenvalues parallel and perpendicu-
lar to lK are given in terms of the corresponding bare
superfluid densities as

o
,,M

"

o"
,,M

1#1
3
F4
1
(1!o"

,,M
/o)

. (34)

The bare superfluid densities are

o"
,
"6pok

B
¹D2

A
+

em;0

SX~3
A

sin2 h cos2 hT, (35)

o"
M
"3pok

B
¹D2

A
+

em;0

SX~3
A

sin2 h (sin2 h#s)T, (36)

where

s"
+v

F
eJ 2SX~3

A
sin2 hT

4l
53
(cos2 d

0
#eJ 2SX~1

A
T2sin2 d

0
)!hv

F
(eJ 2SX~3

A
T#SX~1

A
T)

. (37)

The same result has been obtained by Higashitani
[8].

The suppression factors for bare superfluid dens-
ities are shown in Figs. 6 and 7. The parallel super-
fluid density differs qualitatively from all other
quantities studied here. This is probably associated
with the singularity of X~3

A
in Eq. (35) in the limit

sin hP0, e
m
P0.

5. Conclusion

We have studied the homogeneous scattering
model for superfluid 3He. We find that the Ginz-
burg—Landau theory (extrapolation from ¹"¹

#
)

yields reliable results above +0.7 ¹
#
for the pair-

ing amplitude D and for the superfluid density o
4
,

similar to the case in pure 3He. This confirms the
conclusion reached earlier [3] that the homogene-
ous scattering model gives roughly by a factor of
two larger values for D2 and o

4
than observed

experimentally for superfluid 3He in aerogel. In this
connection we note that the comparison in the case
of the A-phase should be made to the average
superfluid density 1

3
o
,
#2

3
o
M

because lK most likely
is oriented randomly by the anisotropy of the aero-

gel rather than uniformly by the flow in the tor-
sional oscillator experiment.

In principle, the generalization beyond s-wave
scattering is essential for 3He in aerogel. However,
we find that a realistic assumption about the scat-
tering phase shifts gives essentially similar results as
s-wave scattering with random phase shifts. We
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Fig. 7. The suppression factor S"o"
,
(t¹

#
)/o"

,0
(t¹

#0
). At low

¹
#
/¹

#0
the curves for each sin2 d

0
are just in the opposite order

compared to other plots of the suppression factors: the lowest
are for t"0.1, the uppermost for t"0.1, and the middle solid
line is for t"0.5. At higher ¹

#
/¹

#0
some of the lines intersect.

believe this is a general result, but it should be
remembered that we have proven it here only for
the pairing amplitude of the B-phase.
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