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Wigner molecules in quantum dots: A quantum Monte Carlo study
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We study two-dimensional quantum dots using the variational quantum Monte Carlo technique in the
weak-confinement limit where the system approaches the Wigner molecule, i.e., the classical solution of point
charges in an external potential. We observe the spin-polarization of electrons followed by a smooth transition
to a Wigner-molecule-like state as the confining potential is made weaker.
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[. INTRODUCTION weaker makes the density smaller. In this limit the QD ap-
proaches the classical solution of point charges in the QD
Semiconductor quantum dot®D’s) are small devices potential. The most accurate results for this limit are re-
containing a tunable number of electrons in an external constricted to rather strong confineméntyhere no trace of
finement potential. The significant progress in the fabrica- Wigner molecule or spin polarization was found. For weaker
tion Of these devices during the |ast few yédnas Stimu_ Confine.ments than considered in Ref. 5 we f|nd that the SyS'
lated an increasing interest in investigating the properties ofem spin polarizes before the electrons localize around the
such systems. From the theoretical point of view, QD’s areclassical positions. We also introduce a conditional probabil-
ideal many-electron objects for the study of fundamentalty density which shows to be a good measure of the extent
physica| properties of correlated electrons. of the localization of the electrons. In addition, we find an
Perhaps the most striking feature in these artificial atom#nteresting independent-electron-type scaling of the energy
is that the system parameters can easily be changed, unlike i@ & large range of confinement strengths.
real atoms where the parameters are natural constants. Also
the typical length scales of interactions and confinement are Il. MODEL AND METHOD
equal, which should in principle make the correlation effects
more enhanced compared to normal atoms. However, the
experimentally observed states of QD’s in weak magnetiéW

The commonly used Hamiltonian fdd electrons in a
o-dimensional QD can be written as

fields can easily be understood as single configurations of N 52 . 2 5
noninteracting one-particle statt$One might suppose that HZE _ V2+ m r2 +E e_, (1)
the lack of a strong central Coulomb potentiahich orga- i=1 2m* 2 ! i<) €fj

nizes the states of normal atoms to shellould make it h is the st th of th ¢ | fini tential
more difficult to identify the electronic structure of artificial wheréw 1S the strength ot the external confining potential,
and the effective mass of the electran$ and the dielectric

atoms. It turns out, however, that the important role of the . )
central potential is taken by the symmetries of the many_constante are used to model the properties of the semicon-

body wave functiof* Consequently the understanding of ductor material studied. For GaAs, the material parameters

— _ 6
the topology of the many-body wave function is of central'® M*/Me=0.067 ande=12.4." We assume that the elec-
importance. trons move in the=0 plane and omit the magnetic field in

A most suitable method for studying the many-body wavelhis study.

functions is the variational quantum Monte CafléMC) In this work, we use variational wave functions of the
technique. It is intimately coupled to the structure of theform

wave function, and the use of the variational principle en- N

ables one to find the best form. The exact diagonalization ¥=D.D H ) )
(ED) method is useful for the studies of small electron TS S

numbers or for finding eigenstates in some important sub-
space of the full Hilbert space, as in the studies of electron
in such a strong magnetic field that the physics is mainIyQ'
determined by the single-particle states of the lowest Landal]
level# ED has been used for QD’s by many authors, see Ref’

gvhere the first two factors are Slater determinants for the two
pin types and is a Jastrow two-body correlation factor. We
eglect the three-body and higher correlations. For the Ja-
trow factor we use

5, and references therein. Mean-field methods such as the J(r)=geCr/@+bn) 3)
spin-density functional theor¢SDFT) are especially useful '
when the number of particles is large. wherea is fixed by the cusp condition to be 3 for a pair of

In this work, we first compare our VMC results with the equal spins and 1 for opposite ones anés a parameter,
most accurate energies in the literature, showing that a rathelifferent for both spin-pair possibilities. We take the wave
intuitive wave function results in extremely accurate enerfunction to be real, as we have neglected the magnetic field.
gies. Then we concentrate on the weak confinement limit oThe single-particle stateg are expanded in the basis of
a six-electron QD. One should note that making confinemenGaussians as
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Ns . TABLE |. Total energy(in meV) of the six-electron dot for
=> ¢ X v)e (12 i i i ,
(1) ;1 C'an,i(X)Hny,i(y)e , (4) different confinements and the two spin states
hereH, is a Hermite polynomial of orden andf = (X, 50 53
whereH, is a Hermite polynomial of ordem an r=(x,y) o VMC ED2 VMC ED2
=(cyX,cyy), Wherec, andc, scale coordinates.
We calculate the energl which is bound by the exact 7.576 168.9Q1) 169.2 180.4Q1) 180.5
energyE, using 2.678 76.9011) 77.17 79.2704) 79.38
M 1.458 49.1005) 49.35 49.938) 50.10
1
Eo<E= lim = E.(R), (5) 0.947 35.864) 36.11 36.23(2) 36.41
— 00 i=1
M ' aFrom Ref. 5.

where the local energy i, =HWV/W¥, and depends on the . _ ) _
electron configuratiorR. The configuration®R are distrib- this case, we have first taken the single-particle states to be

uted according t9W¥|2. We optimize the variational param- the noninteracting ones with quantum numbers (0,0) and
eters using the stochastic gradient approximatisGA).2 (1,0). With the_GaAs choice of system parameters given
The SGA optimization method involves stochastic simula-2POVe, the confinement energy corresponding to the study of
tion in two spaces: the configuration and the parametefederivaetal.” is around 3.32 meV. The total energy is
space. In the configuration space, a setroéonfigurations ~ found to be 26.563(1) meVRef. 1) which is reasonably
{R;} is sampled from a distributioh? (a)|?, wherea is the close to the DMC value of Pederivatal, namely,
current parameter vector. In the parameter space, the parafie-488(3) meV. On the other hand, the VMC energy re-

eters at iteratio-+ 1 are obtained from the previous ones by Ported by Pederivat al.is 29.669(3) meV.Optimizing the
the formula exponentials lowers our VMC energy to 26.5406(8) meV.

The difference of our VMC energy to the DMC one is
o 1= a;— vV, 9, (6)  around 0.05 meV which is small compared to the SDFT error
~0.4 meV! For the six-electron case, the energy with non-
interacting  single-particle states is found to be
90.27(1) meV, which is again closer to the DMC energy
S90.11(1) meV of Pederivaet al’ than the VMC one
90.368(4) meV. By freeing the parameters in the single par-
1M ticle states one does not lower the energy within the statisti-
Q=(E)=— E EL(R)). (7) cal error, and the optimal values are thus equal to the ones
mij=1 with the noninteracting states. This is a very important result,
The scaling factory has an important role in averaging out showing that the chan_ge i.n the wave function introd_uced by
the fluctuations in the approximate gradient, ensuring thdh® Coulomb interaction is very accurately taken into ac-
convergence. On the other hand, too small a valuey of count by the two-body Jastrow factors used. The reason why

would overdamp the simulation. If one uses a sequepce the optimization of the single-particle states was important in
=i~ one should havé < g<1. the three-electron case is most probably that there the num-

ber of spin-up and spin-down electrons is different.

It is also interesting to compare the results obtained with
VMC with those of Reimant al. for the six-electron case.

In their study, they use both SDFT and ED and consider six
JE dInw dln¥ electrons with various strengths of the confining potential.
ﬁ—m— [< LX > - < da; >} (8 We compare four different strengths of confinement, corre-
sponding in their work to the casesmf=1, 2, 3, and 4 .
where the averagé---) is over the whole Metropolis Their ED energies are given in Table | with our VMC ener-
simulation® One can implement this simple formula also for gies. One can see that the difference in the energies is be-
the SGA algorithm, with the small modification that the av-tween 0.1 and 0.3 meV, the VMC energies being lower. This
erage is taken over only the current semotonfigurations.  comparison shows that the finite basis used by Reimann
et al. is too restricted to describe the many-body wave func-

Ill. RESULTS tion accurately. This comparison also shows that the results
obtained with VMC are very accurate for the particle number
in question.

Before presenting the results for the Wigner-molecule- We also compare the accuracy of our VMC results with
limit of a six-electron QD, we compare our VMC results the path-integral Monte Carlo simulations of Reusthal.
with the most accurate QD results up-to-date. In a recenfor N=828 As we are below mainly interested in the fully
VMC and diffusion quantum Monte CarlODMC) study/  spin-polarized states, we compare only ®e4 energies.
Pederivaet al. study quantum dots using a similar model asThis is not a closed-shell case, and our variational wave
we do. They find the accuracy of VMC to be rather goodfunction for the two highest states is constructed from the
compared to DMC, except in the case of three electrons. Fdour states withn,+n,=3. For interaction strengtic=2,

where vy; is a scaling factor of the step length agflis an
approximation to the cost function. For energy minimization
the cost function is simply the mean of the local energie
over the set of configurations

Lin et all° have shown that in the case of real wave func-
tions and energy minimization, the derivative of the endtgy
with respect to a variational parameteris simply

A. Comparison with other approaches
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FIG. 2. Energy difference between the spin st&#es3 andS

FIG. 1. Total energy for spin stat&=3 (marked with pluses —0 as a function of.w. The line is to guide the eye.

andS=0 (circles as a function ofiw. The line presents the clas-

sical energyEy . . . _ -
9 (in units of ) asEy=w ™Y The minimum energEy can

their energy is 48.3(2)hw which is slightly higher(but  be found to beE¥[meV]~30.46(: w[ meV])?°.
within error bars than our energy of 48.201(1} w. As one The quantum-mechanical energies resulting from our
can see, the statistical error is two orders of magnitud®/MC calculations for two spin polarizations are presented in
smaller in our result. For their most strongly interacting caseFig. 1 with the classical energl;. One can see that the
namely C=8, Reuschet al. obtain energy 103.26(5} w quantum-mechanical energies are very close to each other,
which is again less accurate than our energyespecially in the smalhw limit, where the energies also
103.137(1) Zw. Also this test shows that our results are approach the classical one. The difference between the
very accurate in the limit of strong interaction. quantum-mechanical energies can be seen more clearly in
One can conclude from these comparisons that the wavkig. 2, where we have plotted the energy difference between
function used is very accurate. Most striking is the observathe fully and nonpolarized states. One can see that spin po-
tion that after the Jastrow factor is added to the wave funclarization is predicted @ w~0.28 meV. We have not found
tion, one can use the noninteracting single-particle states iground states with partial spin polarization. Below, we con-
the Slater determinants. Usually in VMC studies there iscentrate on the fully spin-polarized case. If one subtracts
some “residual” interaction effects beyond Jastrow-from the total energy the minimum value of the classical
approximation that are taken into account in a mean-fieljpotential energyey,, the remaining energy has a linear be-
fashion by modified single-particle states in the Slater deterhavior at smalliw as shown in Fig. 3. One way of under-
minants. standing this linear behavior is to consider first the limit
hw—0. In this limit, the electrons localize to the classical
B. Classical limit positions. IfAZw is now made larger, the electrons start to

. . o oscillate around the classical positions. A first approximation
Next, we study the transition to the classical limit in thefor this is to assume that each electron is in a harmonic

six-electron case. The ground-state structure of six purelé tential(r)=152r2  with the st h ling asoc
classical point charges in a parabolic potential minimizes th@2t€ntalv(ri) =z r7, with the strength scaling as= w as
a function ofw. As a result of this, the total energy has, apart

energy
1 C
Eo=5 2 i+ —, ) ¢
: <)t 3.50
where we have used reduced ufiitswe keep other param- 3l
eters fixed and change only the confinement strengilas =
we do below, one can see that the interaction stren@th aE>2'5
scales ax w2 The minimum-energy positions of elec- “(_J. 2
trons form a pentagon around one electron at the center. One W 15
can find the scaling of the classical cluster size and energy by w
writing the coordinates as=r I, where coordinates are 1
fixed and the scaling is in.. This results for the energy 0.5-
1 -, C 1 C , , , , ,
Ec|:f§§ > 2+ o > =T+ Va2, (10 % 01 02 03 04 05

i ¢ 1<) Ty c ho [meV]

where V; and V, are constants, and solvingE/dr.=0 FIG. 3. Remaining energy fd8=3 whenE} (see textis sub-

results inr.=(CV,/V;)Y3x» 6 Thus the energy scales tracted. The line presents a linear fit to poifie<0.1 meV.
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from the classical energy, a zero-point energy that also scalesith one electron in the center of a pentagon. The quantum
as . Thus we obtain a linear behavior for the differenceéffects make the most probable coordinates slightly larger
between the total energy and the classical energy similarly ééan the classical ones, but the difference vanishes for weak
in Fig. 3. The error in the linear fit of Fig. 3 is smaller than confinement. One can also see thais more localized for
3 neV for Aw=<0.1 meV where the fit is made, and for weaker confinement, but only the one witb=0.01 meV

hw=1 meV still only 0.2 meV, which is of the same order |goks like a Wigner molecule. In that case, all the points on
as the difference in energy between the VMC and ED resultﬁ,]e line=0.01 are closer to* than any other? . Also the

in Table I. Forhw=2 meV the error is around 1 meV. Thus . . . . a8
the approximation derived above works surprisingly weIISnapShOt animations of the systems during the simulations
E]ﬁhow the case ckw=0.01 meV to resemble what one ex-

even for a rather strong confinement. One should note th f Wi lecule. A K with a fini
the approximation did not contain any information of the PECts for @ Wigner molecule. As we work with a finite sys-

interaction between electrofapart from the classical poten- €M, We do not have a real phase transition between

tial energy, and thus the system can be seen energetically a5 0-1 and 0.01 meV. In a two-dimensional electron gas, the
a collection of nearly independent electrons oscillating in arPhase transition to a Wigner crystal has been suggested to
effective potential. happen at the density~37+5 (Ref. 14 (in units of effec-

The most probable configuratioR*, maximizing the tive Bohr radiusag , which is around 9.79 nm for our system
density| ¥ (R)|? should approach in the limit of weak con- parameters The radius of a circle that encloses one electron
finement the classical electron positions. This is not, howon the average is thus around 360 nm at the transition point.
ever, enough to show that the system is close to a classicdhis is in a good agreement with the interelectron distances
one. One can study the quantum fluctuations very conveshown in Fig. 4, since in Fig.(4) the distance of edge elec-
niently using the conditional single-particle probability dis- trons to the center one is smaller than the suggested critical

tribution p(r), defined as 360 nm, and in Fig. &) the distance is roughly four times
W(r ¥ () ‘2 the critical one. The approximative relation betweagrand
(r)= vzt NT (11) %o presented in Ref. 5 givesw~0.034 meV forr =37,
W(ry.rs, ... ,rﬁ)‘ which is nicely between the cases of Figéc)4and 4d).

. ) It is also interesting to see the similarity between the ef-
where the coordinatesg are fixed to the ones from the most g Y

probable configuratioR* . In the classical limit, the density [€Ctive single-particle potential shown in Figs. &) and

Z(r) is more and more peaked around the classical positio@i(r?])i’la?ir:d égilgog;eigzgdtigg dg]s:::rii%se. tﬁg :ns?eér(nd).alhvivse did
ry, but il shpws quantum fluctuations._ For the two- above ;’sasystem of six independent elec}[/rons ’each with its
electron case, this is very similar to the conditional probabil- ' i s i ' ~
ity distribution used for a two-electron QB One difference  OWn effective potentiaV. The assumption 20f Zpaiafog‘f
is that inp the fixed electron is at the most probable position,could easily be replaced by, e.gV=3(wi X+ wy,y7)
which is in our opinion the most natural choice. The mostkeeping the problem still solvable. There are, however, con-

important advantage gf is that it shows much more clearly mggg?nssuéﬂagsa{ﬁe ré?(tcgzlr(]er; :anr:gr aci\%g:} :2 itmhlsor?:a\nr:{)lfir
the amount of localization for larger particle numbers than ’ 9 9y P

the conditional probability distribution. The reason for this isthe_sp!n polar|zat|9n of tbe_ system. Another aspect gf the
that one usually fixes only one electron in constructing theSimilarity betweenp and V is that it draws a connection
conditional probability distribution, and when the particle between the wave function and the potential in a similar
number is large, the effect of one fixed electron gets smallefashion that is often assumed in a semiclassical approxima-
and the rest of the electrons can, for example, show collecion. This could be used to motivate the studies of classical
tive motion that conceals the localization. If, on the othercharged particles in various confinements and also a semi-

s p. The calculation of is very easy, especially in VMC. N fl(')r:?Itrr]gnzix\(l)lgrlgramv(\)/:e(r:]glre-holecuIe—Iike regime can also
One should first, of course, find the most probable eIectrore)e seen in the radial airgdistribution function gshown in Fi
positions. In doing this, the gradient of the wave function P ’ 9-

(needed also for the calculation of the local energy, and fo?' The function is clearly more peaked for weaker confine-

this reason usually done analyticallis very useful. After ment. The peak at=_1 consists of two types of electron
that, one moves the “probe electron” to all points where thePalrs, namely, ones with both electrons on the edge, and ones

~ . i with an electron in the center and the other on the edge. The

value ofp is wanted, and evaluates the ratio of wave funC-g|ectron-electron distance in the pair of the first type is in a
tions as in Eq(11). This ratio is automatically done when oaqqical solution 18% longer than in the second, the number
sampling the configurations in a VMC simulation. One ot gitterent pairs being the same in the classical solution.
should also notice that does not contain noise unlike many This double nature cannot be seen in the first pea(oj.
more common VMC observables, such as the density or thghijs is not surprising, as particle exchanges happen even
radial pair distribution function. with Aw= 0.01 meV*® To study exchange, we have fol-

In Fig. 4 we showp for four different confinement lowed the most probable electron positions while forcing the
strengths from 10 to 0.01 meV. The most probable electrorlectron originally in the center to move to the edge. The
positions are for all strengths similar to the classical onesymmetry is broken by making small random displacements
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of the electrons. The particle exchange involves three oFor this, the approximative relatiargivesﬁw~0.37 meV,
more electrons, as shown in Fig. 7. One can see a collectiighich is already closer to the typical confinement strengths
rotation of the edge electrons before one is moved halfway tgh experiments. It would also be very interesting to study the

the edge. This kind of exchange is very easy for the smaleffect of impurities on the spin polarization transition.
QD’s as the one in question. One could argue that larger

electron numbers would make the multiparticle exchanges a
more unlikely process.

Compared with the experimental realizations of GaAs We have first shown that the VMC method results in en-
QD’s, the electron density where the Wigner molecule isergies in good agreement with the most accurate results
found is extremely small. We feel that impurities would available. In VMC, the construction of the wave function
move the transition to larger densities as in the 2D electromlearly plays a central role. We have shown that the effi-
gas, where the transition is found to moverte=7.5 ag 15 ciency of SGA allows us to carefully optimize also the

IV. SUMMARY AND CONCLUSIONS
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FIG. 6. Radial pair distribution function fdtw=1.0, 0.1, 0.01
meV. The curves with smallegfw are more peaked. is scaled to
set the first peak to one.

FIG. 7. Particle exchange fokw=0.01 meV. The electron
from the centefmarked with light-gray circleis moved to the right
along the solid line. The rest of the electrons are always at their

. . . N most probable positions. For the electrons ending at the starting
single-particle part of the wave function, resulting in VMC osition, only these positions and the path followed is shown. The

energies more accurate than the previous ones where tlﬁﬁcles showing the distance from the center have a radius from 500
single-particle states are taken from a mean-field apprbachto 1500 nm

On the other hand, our results show that in many cases the

honinteracting single-particle states are optimal or very closgavorable. To qualitatively study the transition to a Wigner-
to the optimal ones. This is probably related to the highmolecule-like state, we have introduced a measure function

symmetry of the parabolic QD and the separation of the“, which we show to be very useful for the study of the
center-of-mass and relative motion. We feel that the efﬁ'electron localization.

ciency of the SGA method would be even more useful in §yarall we have found VMC to be a perfect tool for
studying the properties of QD’s in a wide range of system

low-symmetry dots.
parameters, resulting in energies in good agreement with the

Unlike in the previous accurate study of the six-electron
5 .
QD,” we have been able to reach low enough densities 0,qst accurate results available and enabling us to study the

find a spin polarization of electrons and, in an even lowelygjicate transition of a QD to the classical regime.
density, a smooth transition to a Wigner-molecule-like state.
The transition happens roughly at the same density as in the
2D electron gas? One should note that the 2D electron gas
does not spin polarize before the transition to a Wigner crys- We would like to thank M. Alatalo, M. Marlo, H. Saari-

tal, but the spin polarized state is very close in enéfg@ne  koski, and V.A. Sverdlov for useful discussions and com-
possible explanation for the difference could be that the mulments. This research has been supported by the Academy of
tiparticle exchange we find in the six-electron dot favors spinFinland through its Centers of Excellence Progr&000—
polarization. In the 2D electron gas, such a process is lesg005.
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