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Wigner molecules in quantum dots: A quantum Monte Carlo study

A. Harju, S. Siljama¨ki, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 HUT, Finland

~Received 14 August 2001; published 23 January 2002!

We study two-dimensional quantum dots using the variational quantum Monte Carlo technique in the
weak-confinement limit where the system approaches the Wigner molecule, i.e., the classical solution of point
charges in an external potential. We observe the spin-polarization of electrons followed by a smooth transition
to a Wigner-molecule-like state as the confining potential is made weaker.
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I. INTRODUCTION

Semiconductor quantum dots~QD’s! are small devices
containing a tunable number of electrons in an external c
finement potential.1 The significant progress in the fabrica
tion of these devices during the last few years2 has stimu-
lated an increasing interest in investigating the propertie
such systems. From the theoretical point of view, QD’s
ideal many-electron objects for the study of fundamen
physical properties of correlated electrons.

Perhaps the most striking feature in these artificial ato
is that the system parameters can easily be changed, unli
real atoms where the parameters are natural constants.
the typical length scales of interactions and confinement
equal, which should in principle make the correlation effe
more enhanced compared to normal atoms. However,
experimentally observed states of QD’s in weak magn
fields can easily be understood as single configuration
noninteracting one-particle states.2,3 One might suppose tha
the lack of a strong central Coulomb potential~which orga-
nizes the states of normal atoms to shells! would make it
more difficult to identify the electronic structure of artificia
atoms. It turns out, however, that the important role of
central potential is taken by the symmetries of the ma
body wave function.3,4 Consequently the understanding
the topology of the many-body wave function is of cent
importance.

A most suitable method for studying the many-body wa
functions is the variational quantum Monte Carlo~VMC!
technique. It is intimately coupled to the structure of t
wave function, and the use of the variational principle e
ables one to find the best form. The exact diagonaliza
~ED! method is useful for the studies of small electr
numbers3 or for finding eigenstates in some important su
space of the full Hilbert space, as in the studies of electr
in such a strong magnetic field that the physics is mai
determined by the single-particle states of the lowest Lan
level.4 ED has been used for QD’s by many authors, see R
5, and references therein. Mean-field methods such as
spin-density functional theory~SDFT! are especially usefu
when the number of particles is large.5

In this work, we first compare our VMC results with th
most accurate energies in the literature, showing that a ra
intuitive wave function results in extremely accurate en
gies. Then we concentrate on the weak confinement limi
a six-electron QD. One should note that making confinem
0163-1829/2002/65~7!/075309~6!/$20.00 65 0753
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weaker makes the density smaller. In this limit the QD a
proaches the classical solution of point charges in the
potential. The most accurate results for this limit are
stricted to rather strong confinement,5 where no trace of
Wigner molecule or spin polarization was found. For weak
confinements than considered in Ref. 5 we find that the s
tem spin polarizes before the electrons localize around
classical positions. We also introduce a conditional proba
ity density which shows to be a good measure of the ex
of the localization of the electrons. In addition, we find
interesting independent-electron-type scaling of the ene
for a large range of confinement strengths.

II. MODEL AND METHOD

The commonly used Hamiltonian forN electrons in a
two-dimensional QD can be written as

H5(
i 51

N S 2
\2

2m*
¹ i

21
m* v2

2
r i

2D 1(
i , j

e2

er i j
, ~1!

wherev is the strength of the external confining potenti
and the effective mass of the electronsm* and the dielectric
constante are used to model the properties of the semic
ductor material studied. For GaAs, the material parame
are m* /me50.067 ande512.4.6 We assume that the elec
trons move in thez50 plane and omit the magnetic field i
this study.

In this work, we use variational wave functions of th
form

C5D↑D↓)
i , j

N

J~r i j !, ~2!

where the first two factors are Slater determinants for the
spin types andJ is a Jastrow two-body correlation factor. W
neglect the three-body and higher correlations. For the
strow factor we use

J~r !5eCr/(a1br), ~3!

wherea is fixed by the cusp condition to be 3 for a pair
equal spins and 1 for opposite ones andb is a parameter,
different for both spin-pair possibilities. We take the wa
function to be real, as we have neglected the magnetic fi
The single-particle statesc are expanded in the basis o
Gaussians as
©2002 The American Physical Society09-1
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c~r !5(
i 51

Ns

ciHnx,i
~ x̂!Hny,i

~ ŷ!e2(1/2)r̂ 2
, ~4!

whereHn is a Hermite polynomial of ordern and r̂5( x̂,ŷ)
5(cxx,cyy), wherecx andcy scale coordinates.

We calculate the energyE which is bound by the exac
energyE0 using

E0<E5 lim
M→`

1

M (
i 51

M

EL~Ri !, ~5!

where the local energy isEL5HC/C, and depends on th
electron configurationR. The configurationsR are distrib-
uted according touCu2. We optimize the variational param
eters using the stochastic gradient approximation~SGA!.9

The SGA optimization method involves stochastic simu
tion in two spaces: the configuration and the parame
space. In the configuration space, a set ofm configurations
$Rj% is sampled from a distributionuC(a)u2, wherea is the
current parameter vector. In the parameter space, the pa
eters at iterationi 11 are obtained from the previous ones
the formula

ai 115ai2g i¹aQi , ~6!

whereg i is a scaling factor of the step length andQ is an
approximation to the cost function. For energy minimizati
the cost function is simply the mean of the local energ
over the set of configurations

Q5^EL&5
1

m (
j 51

m

EL~Rj !. ~7!

The scaling factorg has an important role in averaging o
the fluctuations in the approximate gradient, ensuring
convergence. On the other hand, too small a value og
would overdamp the simulation. If one uses a sequenceg i
} i 2b, one should have12 ,b<1.

Lin et al.10 have shown that in the case of real wave fun
tions and energy minimization, the derivative of the energE
with respect to a variational parametera i is simply

]E

]a i
52H K EL3

] ln C

]a i
L 2E3 K ] ln C

]a i
L J , ~8!

where the averagê•••& is over the whole Metropolis
simulation.10 One can implement this simple formula also f
the SGA algorithm, with the small modification that the a
erage is taken over only the current set ofm configurations.

III. RESULTS

A. Comparison with other approaches

Before presenting the results for the Wigner-molecu
limit of a six-electron QD, we compare our VMC resul
with the most accurate QD results up-to-date. In a rec
VMC and diffusion quantum Monte Carlo~DMC! study,7

Pederivaet al. study quantum dots using a similar model
we do. They find the accuracy of VMC to be rather go
compared to DMC, except in the case of three electrons.
07530
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this case, we have first taken the single-particle states to
the noninteracting ones with quantum numbers (0,0) a
(1,0). With the GaAs choice of system parameters giv
above, the confinement energy corresponding to the stud
Pederivaet al.7 is around 3.32 meV. The total energy
found to be 26.563(1) meV~Ref. 11! which is reasonably
close to the DMC value of Pederivaet al., namely,
26.488(3) meV.7 On the other hand, the VMC energy re
ported by Pederivaet al. is 29.669(3) meV.7 Optimizing the
exponentials lowers our VMC energy to 26.5406(8) me
The difference of our VMC energy to the DMC one
around 0.05 meV which is small compared to the SDFT er
;0.4 meV.7 For the six-electron case, the energy with no
interacting single-particle states is found to
90.27(1) meV, which is again closer to the DMC ener
90.11(1) meV of Pederivaet al.7 than the VMC one
90.368(4) meV. By freeing the parameters in the single p
ticle states one does not lower the energy within the stat
cal error, and the optimal values are thus equal to the o
with the noninteracting states. This is a very important res
showing that the change in the wave function introduced
the Coulomb interaction is very accurately taken into a
count by the two-body Jastrow factors used. The reason
the optimization of the single-particle states was importan
the three-electron case is most probably that there the n
ber of spin-up and spin-down electrons is different.

It is also interesting to compare the results obtained w
VMC with those of Reimannet al. for the six-electron case.5

In their study, they use both SDFT and ED and consider
electrons with various strengths of the confining potent
We compare four different strengths of confinement, cor
sponding in their work to the cases ofr s51, 2, 3, and 4aB* .
Their ED energies are given in Table I with our VMC ene
gies. One can see that the difference in the energies is
tween 0.1 and 0.3 meV, the VMC energies being lower. T
comparison shows that the finite basis used by Reim
et al. is too restricted to describe the many-body wave fu
tion accurately. This comparison also shows that the res
obtained with VMC are very accurate for the particle numb
in question.

We also compare the accuracy of our VMC results w
the path-integral Monte Carlo simulations of Reuschet al.
for N58.8 As we are below mainly interested in the full
spin-polarized states, we compare only theS54 energies.
This is not a closed-shell case, and our variational wa
function for the two highest states is constructed from
four states withnx1ny53. For interaction strengthC52,

TABLE I. Total energy ~in meV! of the six-electron dot for
different confinements and the two spin states.

S50 S53
\v VMC EDa VMC EDa

7.576 168.90~1! 169.2 180.40~1! 180.5
2.678 76.91~1! 77.17 79.271~4! 79.38
1.458 49.101~5! 49.35 49.934~3! 50.10
0.947 35.864~3! 36.11 36.231~2! 36.41

aFrom Ref. 5.
9-2
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WIGNER MOLECULES IN QUANTUM DOTS: A . . . PHYSICAL REVIEW B65 075309
their energy is 48.3(2)\v which is slightly higher~but
within error bars! than our energy of 48.201(1)\v. As one
can see, the statistical error is two orders of magnitu
smaller in our result. For their most strongly interacting ca
namely C58, Reuschet al. obtain energy 103.26(5)\v
which is again less accurate than our ene
103.137(1) \v. Also this test shows that our results a
very accurate in the limit of strong interaction.

One can conclude from these comparisons that the w
function used is very accurate. Most striking is the obser
tion that after the Jastrow factor is added to the wave fu
tion, one can use the noninteracting single-particle state
the Slater determinants. Usually in VMC studies there
some ‘‘residual’’ interaction effects beyond Jastro
approximation that are taken into account in a mean-fi
fashion by modified single-particle states in the Slater de
minants.

B. Classical limit

Next, we study the transition to the classical limit in th
six-electron case. The ground-state structure of six pu
classical point charges in a parabolic potential minimizes
energy

Ecl5
1

2 (
i

r i
21(

i , j

C

r i j
, ~9!

where we have used reduced units.6 If we keep other param
eters fixed and change only the confinement strengthv ~as
we do below!, one can see that the interaction strengthC
scales asC}v21/2. The minimum-energy positions of elec
trons form a pentagon around one electron at the center.
can find the scaling of the classical cluster size and energ
writing the coordinates asr5r cr̂ , where coordinatesr̂ are
fixed and the scaling is inr c . This results for the energy

Ecl5r c
2 1

2 (
i

r̂ i
21

C

r c
(
i , j

1

r̂ i j

5r c
2V11

C

r c
V2 , ~10!

where V1 and V2 are constants, and solving]Ecl /]r c50
results in r c5(CV2 /V1)1/3}v21/6. Thus the energy scale

FIG. 1. Total energy for spin statesS53 ~marked with pluses!
andS50 ~circles! as a function of\v. The line presents the clas
sical energyEcl* .
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~in units of v) asEcl}v21/3. The minimum energyEcl* can
be found to beEcl* @meV#'30.46(\v@meV#)2/3.

The quantum-mechanical energies resulting from
VMC calculations for two spin polarizations are presented
Fig. 1 with the classical energyEcl* . One can see that th
quantum-mechanical energies are very close to each o
especially in the small\v limit, where the energies also
approach the classical one. The difference between
quantum-mechanical energies can be seen more clear
Fig. 2, where we have plotted the energy difference betw
the fully and nonpolarized states. One can see that spin
larization is predicted at\v'0.28 meV. We have not found
ground states with partial spin polarization. Below, we co
centrate on the fully spin-polarized case. If one subtra
from the total energy the minimum value of the classic
potential energyEcl* , the remaining energy has a linear b
havior at small\v as shown in Fig. 3. One way of unde
standing this linear behavior is to consider first the lim
\v→0. In this limit, the electrons localize to the classic
positions. If \v is now made larger, the electrons start
oscillate around the classical positions. A first approximat
for this is to assume that each electron is in a harmo
potentialṼ(r i)5 1

2 ṽ2r i
2 , with the strength scaling asṽ}v as

a function ofv. As a result of this, the total energy has, ap

FIG. 2. Energy difference between the spin statesS53 andS
50 as a function of\v. The line is to guide the eye.

FIG. 3. Remaining energy forS53 whenEcl* ~see text! is sub-
tracted. The line presents a linear fit to points\v<0.1 meV.
9-3
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A. HARJU, S. SILJAMÄKI, AND R. M. NIEMINEN PHYSICAL REVIEW B 65 075309
from the classical energy, a zero-point energy that also sc
as ṽ. Thus we obtain a linear behavior for the differen
between the total energy and the classical energy similarl
in Fig. 3. The error in the linear fit of Fig. 3 is smaller tha
3 meV for \v<0.1 meV where the fit is made, and fo
\v51 meV still only 0.2 meV, which is of the same ord
as the difference in energy between the VMC and ED res
in Table I. For\v52 meV the error is around 1 meV. Thu
the approximation derived above works surprisingly w
even for a rather strong confinement. One should note
the approximation did not contain any information of t
interaction between electrons~apart from the classical poten
tial energy!, and thus the system can be seen energeticall
a collection of nearly independent electrons oscillating in
effective potential.

The most probable configurationR* , maximizing the
density uC(R)u2 should approach in the limit of weak con
finement the classical electron positions. This is not, ho
ever, enough to show that the system is close to a clas
one. One can study the quantum fluctuations very con
niently using the conditional single-particle probability di
tribution r̃(r ), defined as

r̃~r !5U C~r ,r2* , . . . ,rN* !

C~r1* ,r2* , . . . ,rN* !
U2

, ~11!

where the coordinatesr i* are fixed to the ones from the mo
probable configurationR* . In the classical limit, the density
r̃(r ) is more and more peaked around the classical posi
r1* , but still shows quantum fluctuations. For the tw
electron case, this is very similar to the conditional proba
ity distribution used for a two-electron QD.12 One difference
is that inr̃ the fixed electron is at the most probable positio
which is in our opinion the most natural choice. The mo
important advantage ofr̃ is that it shows much more clearl
the amount of localization for larger particle numbers th
the conditional probability distribution. The reason for this
that one usually fixes only one electron in constructing
conditional probability distribution, and when the partic
number is large, the effect of one fixed electron gets sma
and the rest of the electrons can, for example, show col
tive motion that conceals the localization. If, on the oth
hand, one fixes all but one electron, the most natural ch
is r̃. The calculation ofr̃ is very easy, especially in VMC
One should first, of course, find the most probable elect
positions. In doing this, the gradient of the wave functi
~needed also for the calculation of the local energy, and
this reason usually done analytically! is very useful. After
that, one moves the ‘‘probe electron’’ to all points where t
value of r̃ is wanted, and evaluates the ratio of wave fun
tions as in Eq.~11!. This ratio is automatically done whe
sampling the configurations in a VMC simulation. On
should also notice thatr̃ does not contain noise unlike man
more common VMC observables, such as the density or
radial pair distribution function.

In Fig. 4 we show r̃ for four different confinement
strengths from 10 to 0.01 meV. The most probable elect
positions are for all strengths similar to the classical o
07530
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with one electron in the center of a pentagon. The quan
effects make the most probable coordinates slightly lar
than the classical ones, but the difference vanishes for w

confinement. One can also see thatr̃ is more localized for
weaker confinement, but only the one with\v50.01 meV
looks like a Wigner molecule. In that case, all the points

the liner̃50.01 are closer tor1* than any otherr i* . Also the
snapshot animations of the systems during the simulatio13

show the case of\v50.01 meV to resemble what one ex
pects for a Wigner molecule. As we work with a finite sy
tem, we do not have a real phase transition between\v
50.1 and 0.01 meV. In a two-dimensional electron gas,
phase transition to a Wigner crystal has been suggeste
happen at the densityr s'3765 ~Ref. 14! ~in units of effec-
tive Bohr radiusaB* , which is around 9.79 nm for our system
parameters!. The radius of a circle that encloses one electr
on the average is thus around 360 nm at the transition po
This is in a good agreement with the interelectron distan
shown in Fig. 4, since in Fig. 4~c! the distance of edge elec
trons to the center one is smaller than the suggested cri
360 nm, and in Fig. 4~d! the distance is roughly four time
the critical one. The approximative relation betweenr s and
\v presented in Ref. 5 gives\v'0.034 meV forr s537,
which is nicely between the cases of Figs. 4~c! and 4~d!.

It is also interesting to see the similarity between the
fective single-particle potentialsṼ shown in Figs. 5~a! and
5~b!, and the correspondingr̃ in Figs. 4~c! and 4~d!. This
similarity could be used to describe the system, as we
above, as a system of six independent electrons, each wit
own effective potentialṼ. The assumption of parabolicṼ
could easily be replaced by, e.g.,Ṽ5 1

2 (ṽx,i
2 xi

21ṽy,i
2 yi

2)
keeping the problem still solvable. There are, however, c
tributions that are not taken into account in this simp
model, such as the exchange energy which is important
the spin polarization of the system. Another aspect of
similarity betweenr̃ and Ṽ is that it draws a connection
between the wave function and the potential in a sim
fashion that is often assumed in a semiclassical approxi
tion. This could be used to motivate the studies of class
charged particles in various confinements and also a se
classical approach in the limit where the electrons are cl
to forming a Wigner molecule.

The transition to a Wigner-molecule-like regime can a
be seen in the radial pair distribution function, shown in F
6. The function is clearly more peaked for weaker confin
ment. The peak atr 51 consists of two types of electro
pairs, namely, ones with both electrons on the edge, and o
with an electron in the center and the other on the edge.
electron-electron distance in the pair of the first type is in
classical solution 18% longer than in the second, the num
of different pairs being the same in the classical soluti
This double nature cannot be seen in the first peak ofg(r ).
This is not surprising, as particle exchanges happen e
with \v5 0.01 meV.13 To study exchange, we have fo
lowed the most probable electron positions while forcing
electron originally in the center to move to the edge. T
symmetry is broken by making small random displaceme
9-4



i-

-
a
e

WIGNER MOLECULES IN QUANTUM DOTS: A . . . PHYSICAL REVIEW B65 075309
FIG. 4. Conditional probabil-

ity density r̃(r ) for the right-most
electron. The contours are un
formly from 0.01 to 0.91. We
mark with a plus the most prob
able electron positions, and with
circle the classical positions. Th
confinement strength\v is ~a!
10 meV, ~b! 1 meV, ~c!
0.1 meV, and~d! 0.01 meV.
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of the electrons. The particle exchange involves three
more electrons, as shown in Fig. 7. One can see a collec
rotation of the edge electrons before one is moved halfwa
the edge. This kind of exchange is very easy for the sm
QD’s as the one in question. One could argue that lar
electron numbers would make the multiparticle exchange
more unlikely process.

Compared with the experimental realizations of Ga
QD’s, the electron density where the Wigner molecule
found is extremely small. We feel that impurities wou
move the transition to larger densities as in the 2D elect
gas, where the transition is found to move tor s'7.5 aB* .15
07530
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For this, the approximative relation5 gives \v'0.37 meV,
which is already closer to the typical confinement streng
in experiments. It would also be very interesting to study
effect of impurities on the spin polarization transition.

IV. SUMMARY AND CONCLUSIONS

We have first shown that the VMC method results in e
ergies in good agreement with the most accurate res
available. In VMC, the construction of the wave functio
clearly plays a central role. We have shown that the e
ciency of SGA allows us to carefully optimize also th
n

FIG. 5. Potentials felt by one
of the electrons~contours uni-
formly from half to three! when
the five other electrons are o
their classical positions~marked
with a circle!. The confinement
strength\v is ~a! 0.1 meV and
~b! 0.01 meV.
9-5
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single-particle part of the wave function, resulting in VM
energies more accurate than the previous ones where
single-particle states are taken from a mean-field approa7

On the other hand, our results show that in many cases
noninteracting single-particle states are optimal or very cl
to the optimal ones. This is probably related to the h
symmetry of the parabolic QD and the separation of
center-of-mass and relative motion. We feel that the e
ciency of the SGA method would be even more useful
low-symmetry dots.

Unlike in the previous accurate study of the six-electr
QD,5 we have been able to reach low enough densities
find a spin polarization of electrons and, in an even low
density, a smooth transition to a Wigner-molecule-like sta
The transition happens roughly at the same density as in
2D electron gas.14 One should note that the 2D electron g
does not spin polarize before the transition to a Wigner cr
tal, but the spin polarized state is very close in energy.14 One
possible explanation for the difference could be that the m
tiparticle exchange we find in the six-electron dot favors s
polarization. In the 2D electron gas, such a process is

FIG. 6. Radial pair distribution function for\v51.0, 0.1, 0.01
meV. The curves with smaller\v are more peaked.r is scaled to
set the first peak to one.
M

s.
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favorable. To qualitatively study the transition to a Wigne
molecule-like state, we have introduced a measure func
r̃, which we show to be very useful for the study of th
electron localization.

Overall, we have found VMC to be a perfect tool fo
studying the properties of QD’s in a wide range of syste
parameters, resulting in energies in good agreement with
most accurate results available and enabling us to study
delicate transition of a QD to the classical regime.

ACKNOWLEDGMENTS

We would like to thank M. Alatalo, M. Marlo, H. Saari
koski, and V.A. Sverdlov for useful discussions and co
ments. This research has been supported by the Academ
Finland through its Centers of Excellence Program~2000–
2005!.

FIG. 7. Particle exchange for\v50.01 meV. The electron
from the center~marked with light-gray circle! is moved to the right
along the solid line. The rest of the electrons are always at t
most probable positions. For the electrons ending at the star
position, only these positions and the path followed is shown. T
circles showing the distance from the center have a radius from
to 1500 nm.
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