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Abstract

It is well-known that wavelets provide a transformation of image data that has excellent properties with

respect to image compression. The reasons for the compression ability of wavelets however have not been fully

understood. In this paper we show that there is an interesting connection between wavelets and statistical

properties of real-world images. This might lead to new theoretical and practical results in the domain of image

processing. We show how wavelet-like filters emerge automatically as a result of applying a statistical technique,

called independent component analysis, on natural images.

1 Introduction

Recently wavelet theory [17] has proved to be one of the most promising approaches to image processing, especially
image compression. Wavelets give an orthonormal linear transformation of image data that has the property that
the energy of the data is concentrated in only a few coefficients. Different compression schemes have been developed
to exploit this property. The basic idea is to preserve only those coefficients that are significantly non-zero; the set
of such coefficients is different for every image window. The reasons for the success of such compression schemes
has not been fully understood. Some researches have proposed that wavelets are efficient because they mimic the
properties of neurons in the visual cortex [13].

In this paper we provide a different insight into the success of wavelets. This is based on statistical analysis of
real-world images. We suggest that wavelets are efficient because they closely resemble filters that are obtained
when a certain technique, recently developed in statistical signal processing, is applied on real-world images. This
technique is independent component analysis [3].

In independent component analysis, or ICA, one tries to decompose a random vector linearly into components
that are not only decorrelated, but also as independent as possible in the sense of higher-order statistics. Often this
implies that one must find a transformation that provides a vector whose components are as ’sparse’ as possible.
Sparsity means that the probability of a component to be significantly different from zero is very low.

We suggest that it is this conjunction of independence and sparsity that explains why wavelets are successful.
Sparsity implies that the number of simultaneously ’active’ components is very small. Thus sparsity embodies
exactly the property that seems to be behind the success of wavelets. In our experiments, we applied ICA on real-
world images. The obtained filters resemble wavelets, and thus the experiments back up our theoretical arguments.

Similar observations have been done before by others [1, 14]. Our results show a wide variety of structure, while
the results of others have been qualitatively more limited. We also try to quantify the connections between our
results and wavelets instead of just visually observing that the results are ’wavelet-like.’

2 Wavelets

A fundamental problem in signal processing is to find a suitable representation for a signal. Usually different signal
representations are based on linear transformations of the signals onto different bases. For example, one way to
represent a time signal is to consider its Fourier transformation, which can be seen as projecting it onto a basis of
functions each of which consists of just one frequency.

Whereas the usual signal representation is well localized in time — or in the case of images, in space — the
Fourier representation of the signal is well localized in frequency. It has been observed that for signals with time



varying spectra, i.e., signals in which the frequency contents do not stay constant over time, a representation of the
signal localized both in time and in frequency would be very useful for many purposes. One method used to solve
the problem is the short time Fourier transformation (STFT), where we restrict our attention around a certain
time point of the original signal by multiplying it with a window function (e.g., a Gaussian function) and Fourier
transforming this modified signal. The problem with STFT is the constant window size, which is difficult to choose
and fixed for all frequencies [17].

Wavelets are one method developed to solve this problem [4]. Wavelets are families of basis functions, each
family being generated by scaling and translating a ’model function’ called mother wavelet. From a mathematical
point of view this restricted form of functions is an essential property because it makes the theoretical analysis
feasible. But it may not be crucial from the point of view of applications. An important property of wavelets is that
they are localized both in time and frequency [17]. This is also typical of STFT, but the localization of wavelets
is specialized so that wavelets that respond to low frequencies are more frequency selective, i.e., localized in the
frequency domain, but also more spread in time than wavelets which respond to high frequencies. So wavelets have
variable window size, and the window size is connected to the frequency response of the wavelet. These qualities
will be the basis of our examination of the similarities between ICA and wavelets.

Wavelets represent a compromise between good time resolution and good frequency resolution, a trade-off being
forced by the linear approach [17] (for other, nonlinear methods see [2]). Some applications in which they have
proven to be useful are feature detection, compression, noise removal, computer vision and graphics and time-
frequency description of signals [15].

3 Independent Component Analysis and Sparse Coding

3.1 The Basic Model

Independent Component Analysis (ICA) [3, 11] is a statistical signal processing technique whose goal is to express a
set of random variables as linear combinations of statistically independent component variables. Some applications
of ICA are blind source separation [11], feature extraction [1, 7], and, in a slightly modified form, blind deconvolution
[6]. In the simplest form of ICA [3], we observe m scalar random variables x1, x2, ..., xm which are assumed to
be linear combinations of n unknown independent components, or ICs, s1, s2, ..., sn that are mutually statistically
independent, and zero-mean. Note that the assumption of zero mean is in fact no restriction, as this can always
be accomplished by a preliminary centering of the observed data. To enable estimation of the ICs, we must also
assume that n ≤ m. Let us arrange the observed variables xi into a vector x = (x1, x2, ..., xm)T and the IC variables
si into a vector s, respectively; then the linear relationship is given by

x = As (1)

Here, A is an unknown m × n matrix of full rank, called the mixing matrix. The basic problem of ICA is then to
estimate the realizations of the original ICs si using only the mixtures xj or, equivalently, to estimate the mixing
matrix A. The fundamental restriction of the model is that we can only estimate non-Gaussian ICs (except if just
one of the ICs is Gaussian). Moreover, neither the energies nor the signs of the ICs can be estimated because any
constant multiplying an IC in eq. (1) could be canceled by dividing the corresponding column of the mixing matrix
A by the same constant. For mathematical convenience, one usually defines that the ICs si have unit variance.
This makes the (non-Gaussian) ICs unique, up to their signs [3]. Note that no order is defined between the ICs.

If ICA is used for feature extraction [1, 7], the columns of A represent features, and si signals the presence and
the ’amplitude’ of the i-th feature in the observed data x.

3.2 Contrast functions

The basic principle of many algorithms for ICA estimation is the use of a contrast function. A very popular contrast
function is kurtosis. Kurtosis, or the fourth-order cumulant [10] is defined for a zero-mean random variable v as
kurt(v) = E{v4} − 3(E{v2})2. Kurtosis is a contrast function for ICA in the following sense. Consider a linear
combination of the observed mixtures, say w

T
x, where the vector w is constrained so that E{(wT

x)2} = 1. When
w

T
x = ±si for some i, i.e., when the linear combination equals, up to the sign, one of the ICs, the kurtosis of w

T
x

is minimized or maximized [5, 10]. This property is widely used in ICA algorithms.
For our purposes, it is interesting that contrast functions can in most cases be interpreted as measures of sparsity.

It is well-known [12] that distributions with high positive kurtosis are usually quite sparse, i.e., their densities are
peaked at zero, thus making the probability of significantly non-zero values small.



In fact, under suitable assumptions, ICA estimation simply means finding those linear combinations w
T
x in

which the kurtosis, and thus sparseness, are maximal. The main assumption needed is that the ICs must have
positive kurtoses, i.e., they are sparser than the Gaussian distribution. This assumption seems to be true for most
components in image data. Thus we see that the ICA transformation provides us with components that are at the
same time as independent and as sparse as possible.

3.3 A Fixed-Point Algorithm for ICA

To actually perform the ICA estimation we use a fast fixed point algorithm. A necessary prerequisite for the
algorithm is that the data be uncorrelated or white. For this purpose the data is whitened by

v = D
−1/2

E
T
x,

where E is the matrix of eigenvectors of the covariance matrix of x and D the diagonal matrix of corresponding
eigenvalues. This is called PCA whitening. At this point it is also possible to use the properties of PCA to reduce
the dimension of the data by selecting only the largest eigenvalues and their corresponding eigenvectors to form D

and E.
The computation of ICA is accomplished using the following fixed-point algorithm, proposed in [8, 9]. In this

algorithm, we have a set of vectors wi, i = 1, ..., n, each of which is updated in the (k + 1)-th step as follows:

w
∗(k + 1) = E{vg(w(k)T

v) − g′(w(k)T
v)w(k)} (2)

ŵ(k + 1) =
w

∗(k + 1)

||w∗(k + 1)||

where g is a suitable non-linearity, e.g. one of the following:

g1(u) = tanh(u), g′
1
(u) =

1

cosh2(u)
(3)

g2(u) = u exp(−u2/2), g′
2
(u) = (1 − u2) exp(−u2/2) (4)

(In practice, the expectation in (2) is estimated using a sufficiently large sample of data.) After updating the vectors
as in (2), they must also be orthogonalized. This is done using a method that changes the matrix minimally in the
Frobenius norm sense

W = Ŵ(ŴT
Ŵ)−1/2,

where W = [w1 · · · wn] and Ŵ = [ŵ1 · · · ŵn]. For details on this algorithm, see [8], where it is also shown that
the algorithm searches for the right extrema of a contrast function which can be seen as a robustified version of
kurtosis, thus finding the ICs as linear combinations W

T
v.

After matrix W has been determined, matrix A is calculated by A = ED
1/2

W. This is valid even if we have re-
duced the dimension of the problem — then the determination of matrix A of ICA basis vectors is underdetermined,
and the solution above is the minimum norm or pseudoinverse solution to the problem.

4 Experiments

The data used in the experiments consisted of 15 different natural images describing different scenes, plants and
animals. In the experiments a set of 10000 (possibly overlapping) subimages of size 12 × 12 pixels was extracted
randomly from the image set. These subimages were vectorized into 144-dimensional vectors, which were used as
the mixed data x of the ICA model (1).

Two preprocessing steps were used. First, low frequency components of the overall images were discarded by
subtracting from each sample vector the mean of its components. Second, in order to avoid the domination of
high variance areas we equalized the local variance in each sample to 1 by dividing each sample by its norm. The
subtraction of the mean reduces one dimension of the data, so PCA was used to reduce the dimension of the input
data by 1 when the data was whitened.



Figure 1: Basis vectors obtained using the fixed point algorithm and their spreads. The image has been scaled for visual

display so that the mean grayscale value corresponds to value zero in the original vectors. A lighter color indicates a larger

value.

5 Results

Experiments using ICA were conducted with the fixed point algorithm in (2), using g1 in (3) as the nonlinearity g.
The results can be seen in Figure 1. The subimages presented here are ICA basis vectors, that is, column vectors
of matrix A in the ICA model (1). Assuming that the hypothesized ICA model (1) holds here, we would deduce
that each image block in the data set is built of construction blocks of Figure 1, the coefficient of each block being
given by the value of the corresponding independent component.

In order to analyze the results we introduce some useful concepts from time-frequency analysis [2] and generalize
these to two dimensions. The techniques we shall use are called time and frequency distributions. Consider the
energy of a time signal at each moment, that is, the square of the signal. Assume that we normalize the total
energy of the signal to be 1. Then we can consider this energy function to be an energy density [2]. This density
can be used in a similar manner as a probability density to calculate properties of the signal. For example for a
1-D signal s(t) which has been normalized to have an energy of 1, the mean time of the signal is calculated as

〈t〉 =
∫

t |s(t)|
2
dt. The duration of the signal — or variance in time — is calculated as

〈

(t − 〈t〉)2
〉

. Similar concepts
can be defined in the frequency domain, giving us the mean frequency and bandwidth (or variance in frequency).

Now consider generalizing these definitions for image data. Then the energy densities in both spatial and
frequency domain are functions of two variables — in the spatial domain we have the image function s(x, y) and in
the frequency domain the corresponding cosine transform S(u, v) — so the densities are similar to joint probability
densities of two random variables. The mean location and mean frequency of an image are calculated as for usual
random variables. The result is a two-dimensional vector. To calculate the spatial variance, which we shall call



Figure 2: Magnitudes of the 2-dimensional discrete cosine transformations of basis vectors of Figure 1 and their bandwidths.

The energies of the vectors have been equalized. Here a darker color indicates a larger value.

spread, we add the variances of x- and y-directions together. The bandwidth of the image is defined similarly.
ICA basis vectors in Figure 1 have been ordered by the magnitudes of their mean frequencies. In the smaller

subimage we can also see their spreads. In Figure 2 we can see the two-dimensional discrete cosine transformations
of the basis vectors of Figure 1 along with the corresponding bandwidths.

As can be seen in Figures 1 and 2, most basis vectors obtained using the fixed point algorithm are localized in
both space and frequency, that is, the energies of the vectors are localized to a subset of the space. We can also
see that those basis functions representing lower frequencies are spatially more spread, but also more localized in
the frequency domain than those representing high frequencies. These are central properties of wavelets [17, 16],
which makes this an important result for the analysis of similarities and connections between ICA and wavelets.

When different initial starting points were selected in the algorithm (2), the results were quantitatively different
but qualitatively alike, that is, the basis vectors fulfilled the wavelet-like properties described above. Mostly the
obtained vectors were translated and/or rotated versions of the basis vectors of other runs. This suggests that the
ICA model does not hold in the sense that there may be more sources than the number of measured signals, and
that the algorithm finds only an orthogonal subset of possible ’independent’ directions.

6 Conclusions

In this paper we examined the connection between wavelets and the statistical properties of natural images. We
hypothesized that natural images follow the ICA model in small scale (small subwindows), and we used an ICA
algorithm to extract the parameters of this linear model. The algorithm used is a fast fixed-point algorithm, based



on the optimization of a contrast function [8, 9]. We found out that ICA basis vectors obtained using this method
resemble wavelets, i.e., they are localized in both space and frequency and their spatial localization is directly
proportional and frequency localization inversely proportional to the frequencies to which the wavelet responds.
This provides a new insight into the theory of wavelets from the viewpoint of statistical properties of natural images
and signals, and may give us a way to search data or application dependent bases for their representation.
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