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Abstract

The Hamiltonian approach is used to analyze the equation describing the elec-
tron interaction in gyrotron resonators with realistic RF field profiles. A detailed
numerical study of the behavior of electron trajectories for some specific values of
parameters controlling the interaction is performed. It is found that in some cases
chaos-like motions of electrons are possible.
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I. Introduction

Gyrotron is a special tube generating powerful radio waves in the millimeter
wave range. Gyrotrons are mainly used to heat nuclear fusion plasma, in order to
induce controlled thermonuclear reactions on earth. In addition, they have found
a wide utility in radars and the high-temperature processing of materials. Ex-
tensive literature exists on various experimental and theoretical aspects of these
microwave tubes [1]. However until recently no fundamental mathematical anal-
ysis of the basic equation describing the electron interaction with the RF field in
gyrotron resonators was available. The first analysis of this kind was presented
in [2] where it was proven that in the case when the RF field is represented by a
Gaussian-type function, the solutions of the gyrotron equation are asymptotically
equal to the solutions of the corresponding unforced equation. This means that
chaos, which, in principle, can develop in a resonator for some values of control
parameters, can be only transient, i.e., electrons again follow regular trajectories
once they leave the interaction space. In [3] this analysis was extended to the case
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of an infinitely long resonator in which the RF field was represented by a propa-
gating wave. It was shown that in this case phase trajectories of the electrons are
much more complicated than in the case of a decaying RF field. The analysis in
these two papers was based on the theory of differential equations and, possibly,
was not easily understandable for a physically oriented reader. In the present work
we employ the powerful and physically transparent Hamiltonian method used re-
cently [4] in analyzing chaos in a gyrotron-type of interaction. We include in the
analysis a completely realistic case: a resonator with a finite length and a true
longitudinal distribution of the RF field.

I1. Gyrotron equations

The equation which describes the electron motion in a gyrotron resonator can
be written as follows {5}

j—‘c’ +i(A+[pP ~ Dp=if(OF 1)

with the initial condition p((o) = exp(ify), where 0 < 6y < 2n. Here p is the
2
dimensionless transverse momentum of the electron, ¢ = 244 . 7 is the dimension-

25“08
less coordinate, 810 = vio/c and Bg = vjo/c are the normalized transverse and

parallel velocities of the electron at the entrance to the cavity, A = g%%c) 1s the

i0
frequency mismatch, w. = 567 B/7,¢ is the electron cyclotron frequency in GHz,
B is the magnetic field in Tesla, v, = 1+ U/511 is the relativistic factor, U is
the accelerating voltage in kV. The dimensionless electron beam to RF coupling
factor F is given by the expression:

anii (%Rel)

F = 0-00047Qdifpout ; y
YretUnetBoBo(v? — m2)JZ(v) 3™ 17 (()12dC

where Qg5 is the diffractive quality factor of the cavity, P,,; is the output power
of a gyrotron in kW, J is the Bessel function, X is the wave length, v is the eigen-
value, R is the electron beam radius, and + indicate the two possible directions
of rotation of RF field (co-rotating with the electrons —, and counter-rotating with

the electrons +). The electron efficiency is g =
dicular efficiency:

Tiaz " 7L, where 7, is perpen-

ne =1L [ |5(Cous) |2y

and o = (3, /B is the pitch factor of the electrons.
Equation (1) represents the so-called cold-cavity approximation in the gy-
rotron theory when the RF field in a gyrotron resonator f(¢) depends only on the
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geometry of the resonator, but not on the electron motion, i.e., f does not depend
on p. In this case the RF field in a cavity is usually approximated by a Gaussian

£(¢) = exp {— (% - Jﬁ)g] )

2
where p =7 (%) % is the dimensionless length of the resonator with length L.

In [2] equation (1) was examined in detail from the mathematical point of view.
In particular electron trajectories were classified and the asymptotical equivalence
of (1) and of the corresponding unforced equation (f(¢) = 0)

T HiB+lg = Dg=0, 4(6) = 3)
was proved in the case when the function f({) decays fast enough for large (:
faster than 1/¢2*¢. In such a case each solution of (1) corresponds to a solution
of (3) with changed initial data. It should be emphasized that the RF field in
the cavity represented by a Gaussian (2} is an approximation which is valid in
resonators with very high quality factors. In realistic cases even in the cold-cavity
approximation f(¢) has to be determined for each specific resonator geometry by
solving the following second-order differential equation:

% (O =0 @)

with the boundary conditions
£ =05, ¢=0,
£ =-ir(Qf, (= Cou

Here the function y(¢) depends on the frequency of oscillations, the quality factor
and the geometry of the resonator. For the purpose of the present study we can
simply write ¥(¢) = k() + ix({). In Figs. 1 and 2 we show typical examples of
£(¢) and ().

As is evident from these figures, for ( > 70 where the output taper of the
cavity goes over into cylinder the function f({) can be approximated as a wave
moving in the +( direction: f({) ~ e~¥¢. Moreover, since k > k, one can write

F(Q) ~e7™E,
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Figure 1: The longitudinal profile of the RF field in a realistic gyrotron resonator correspond-
ing to p = 9.
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I11. Hamiltonian method

By introducing the notation p = @ + ¢P in (1), we obtain the dynamical
system:

%%" =‘;_§=' —8P+P(Q*+ P%) - Fg(¢)
(5)
dP OH
l% ~a0° +6Q — Q(Q* + P?) + Fh(()

where 6 = 1-A, ¢(¢) and k() are respectively the imaginary and real part of f(¢).
The dimensionless coordinate { can be regarded as time and the time-dependent
Hamiltonian with one degree of freedom can be written as:

H(Q,P.() = Ho+ Hy = —3(Q* + P)+ ©
1(Q% + P?)? — F(QR{C) + Pg(())

The unperturbed Hamiltonian is integrable and is defined as follows:
8 2 2y, 12 212
HO(Q:P,C):—i(Q +P)+Z(Q + P%)" = Ep (7)

where Fy is the total energy which is conserved during the evolution of the system
(the Hamiltonian system). The term H; = —F(Qh(¢) + Pg(¢)) represents the
driving force and is considered as a perturbation.

In general in Hamiltonian methods we first analyze the unperturbed part to
determine the important properties of the system (constants of motion). Sub-
sequently the nonlinear part of the Hamiltonian is studied by the perturbative
approach (almost integrable). We now can analyze different solutions either by
means of the Poincaré sections, or in terms of the angle-action variables. The first
approach is a powerful tool for detection of chaotic solutions. The second approach
allows one to analyze the fundamental properties of the dynamical system and to
find the elliptic and hyperbolic points (fixed points). Knowing these points we
can understand the structure of the phase space. Namely, hyperbolic points play
a crucial role in the possible emerging of chaos around them as a result of the
Kolmogorov-Arnold-Moser (KAM) torus destruction by the perturbation associ-
ated with the nonlinear part of the Hamiltonian. In this case some constants of
motion are destroyed. The angle-action variables allow us in some cases to sepa-
rate the variables in the Hamiltonian, to find the invariants (constants of motion),
and to demonstrate the integrability of the dynamical system.

We now rewrite the Hamiltonian Hy in terms of the angle-action variables
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(6,J). We use for this the canonical transformation (@, P) — (6, J) which pro-
vides Ho(Q, P) — Ho(J). The action J is defined as:

1 2T
J=— Pd
;g Q (8)

:21r

From (7) we obtain the momentum P = +/+v/4FEp + 6% + § — Q* and the coordinate
Q € |[-Qwr, Qum), where Qur = /0 + V4Eg + 6%. Now the action J becomes:

Qs

J:4X§:!;-T‘/ f\/4E0+62+6—Q2dQ: (9)
0.

1

5 6+ V4E + &%)

This is the first integral of motion (constant of motion) for the unperturbed Hamil-
tonian system. Substituting now E; in terms of the momentum P into (9) we
obtain:

P=+/2J]-Q? (10)
We now can calculate the angle 8 by means of the canonical transformation which
is defined as: P = g_f) and 8 = g—i where S(J,Q) is the generating function.

The expression for the Hamiltonian in terms of the action J is obtained from the
Hamilton-Jacobi equation:

Ho(%aQ) = Fo(J) = Eo (1)

With the help of (9) the Hamiltonian Hq(J) writes:
Ho(J)=J? - 6J (12)

The Hamilton equations immediately lead to the following system of equations:

. 9H, ~
J“Ta =0 = J = const.
8H,
0= ——=wp=2J-9
57 — w0 J
. . L. 2m 2r .
From here it follows that the period of motionis T = — = 573 The generating
Wy —

function S(J, Q) depends only on the coordinate @), because the action J is the
constant of motion. From this and from the canonical transformation we obtain:

Q Q
S(,Q) = [ PdQ = ]0 V2T~ GRdQ (13)

0
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For the angle @ we can now write:

95&9—;@=ﬁ%(mwa (14)

Carrying out the integration, we finally find for the angle 6 the expression:

. Q
@ = arcsin 15
i (15)
From (10) and (15) we have also:
Q =+V2Jsind (16)
P =+/2Jcosd

This system gives the transformation from the action-angle variables to the original
variables @ and P. The period of the unperturbed dynamical system in the old
variables becomes T = 2n(Q% + P# — (1 — A)) 7!, where Q% and F} are the initial
conditions. The trajectories of the electrons are circles with the radius \/Q3 + F§
and are centered at the origin in agreement with what was found in [2].

We now can write the total Hamiltonian (6) as a function of the angle-action
variables as follows: H(J,8,¢) = Ho(J) + H1(J,0,(). With the system (16) we
obtain:

H(J,0,¢) = J? — 8J — FV2J [R(C) sin + g(¢) cos 6] (17)

This is still a time-dependent Hamiltonian with one degree of freedom. The non-
linear part H, of the Hamiltonian (17) couples through f(¢) the action J and the
angle # and perturbs the integrable Hamiltonian Hy. In a general case the total
Hamiltonian H becomes non-integrable. It can exhibit a complex behavior and
also can lead to chaotic solutions.

A. Infinitely long idealized resonator

The solutions of (17) depend on the functions A(() and g({). As noted already
in Sec. II the real and imaginary part of f(({) for large values of { can be represented
as periodic functions with period k: h{{) ~ cos(k¢) and g{{) ~ sin{k(). Assuming
that an idealized resonator is such that this representation is valid in the entire
interaction volume, we can rewrite the Hamiltonian (17) as follows:

H(J,8,0) = (J2 —8J) — FV2J sin (8 + kC)
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It is possible to eliminate the explicit time dependence by means of a new gener-
ating function [6] F»(1,8) = I (6 + k(). The canonical transformation gives for the
new variables (¢, I} the system:

o,
p=22 = =64k

The new Hamiltonian must satisfy the equation:

BFQ
6§ '
We finally obtain the time-independent Hamiltonian

H(I,¢) =H(J,6,0) +

H(IY)=I*-16~k)-FV2Isiny=E (18)
Using the angle-action formalism, we arrive at the integrable Hamiltonian with

one degree of freedom, where E' is the total energy. This Hamiltonian satisfies
the following equations:

6H

I= 3111 = F\/2[cosy »
. aH F

With (18) and (19) we can directly integrate the equations of motion and find
(I’-1(8—-k))—E
FV2I

equation of the system (19) and after some algebra we obtain:

. With the first

fixed points. From (18) we have siny =

/ ar
Imin \/2]'F2 —[(I'*=T (6 —k) - E)]?

(20)

Here the domain of convergence is given by I €|Inin, Ipaz[- This integral can be
expressed in term of elliptic functions. In this way in the old variables we can
obtain the parametric eguation for the electron motion.

Another interesting application of (19) is the determination of fixed points
(elliptic and hyperbolic). These points are defined by the equations: I=0and
¢ = 0 (the forces are zero). From the first equation of (19) we have for I = 0 two

3n
possibilities: ¥ = g or ¥ = - For yn = m/2 the second equation of (19) gives:
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Figure 3: The phase portrait of (19) in the case of three real roots

21—(6—k)—\/%=0, where F > 0. (21)

We have only one real root which corresponds to the elliptic point. For ¢ = 37/2 -
the second equation of (19) becomes:

F
2 - (6—k)+ —= =0, where F > 0. 22
(6 —k) WoT, > (22)

IfF< %(6 - k)3/ 2 we obtain two real roots, one of which is an elliptic point

and the other one is a hyperbolic point. Depending on the value of F, the phase
space will have either one, two, or three fixed points. When F increases the elliptic
and hyperbolic points of (22) collide and disappear. Also the separatrix disappears
(Hamiltonian bifurcation), see Fig.3.

It is possible to find the equation for separatrices of the hyperbolic point. Tt
turns out to be the Pascal limacon. From the Hamiltonian (18) we have

P —I(6— k) - FV2siny = IZ — Io(0 — k) + F\/2I, (23)

where Ip is a root of (22) corresponding to the hyperbolic point and vy = 37/2.
Let us introduce the new variables

I-I=VE(VE-2/Tsing),
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VIsiny + /Ty = vVRsin .

After some algebra we find

\/Ti(\/l_{—z\/Esincp)z +VR(2Iy — 8 + k)
—V2sing (F + (2Iy — 6 + k)v/2Iy) =0

Since [y is the root of (22), we obtain the equation for the Pascal limacon
2
(\/E—Q Igsingo) =06 —k -2l (24)

The single elliptic point or central fixed point of (21) is always preserved.
These results are in agreement with the results obtained in [3] by means of the
mathematical analysis of the corresponding equations. However, using the angle-
action formalism we have shown also that the Hamiltonian (6) with a periodic
perturbing force in the form of trigonometric functions is completely integrable
which means that no chaotic solutions exist, because for an integrable system the
entire phase space is filled with invariant tori and any trajectory will remain on
the particular torus selected by the initial conditions.

To iliustrate in detail the location of the fixed points, we now present the
Poincaré sections obtained by numerical integration of the dynamical system (5)
for several sets of the control parameters. In Fig. 4 we show the results for
A=-02,F =0.01 and k& = 1. In this case there are three fixed points. With
the help of (16), (22) and (23) we can accurately compute the positions of the
elliptic and hyperbolic points in the phase space. There are two elliptic points
located at P, = 0 and @, = 0.47038 and at P = 0 and @2 = —0.05065, and
one hyperbolic point at P3 = 0 and @3 = —0.4197. Fig. 5 illustrates the case
(F = 0.0333) with the Hamiltonian bifurcation when the elliptic and hyperbolic
points of (23) merge at P, = 0 and Q2 = —0.2582 (double root), and the separa-
trix disappears. Fig. 6 shows for A = ~0.2, F = 0.1, and k = 1 one elliptic point
of (22) at P, = 0 and Q, = 0.6045. The hyperbolic and elliptic points disappear,
because (23) has no real roots. ,

It should be emphasized that in these three examples the parameter A was
chosen to be negative which is not typical in gyrotrons operating in normal regimes.
This was done solely for illustrative purposes, because as can be easily seen from
Eq. (22) and the condition following it § has to be larger than k. For A > 0 we
have only one central fixed point. For example, (see Fig. 7) for A = 0.5, F = 0.1,
and k = 1 the central fixed point is located at P, = 0 and ¢J; = 0.12269.

B. Realistic resonator

We now investigate the gyrotron equation in a completely realistic case when
a resonator has a finite length and the perturbation (RF field) is an aperiodic
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Figure 9: Poincare section with the Hamiltonian bifurcation. The elliptic and hyperbolic
points merge at P =0 and Q = —0.2582. (A = —0.2, F = 0.0333, and k = 1).

T=05 0 0.5 1

Figure 6: Poincare section with the central fixed point. (A = —-0.2, F=0.1,and £k =1.)
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Figure 7: Poincare section with the central fixed point. (A = 0.5, F = 0.1, and & = 1.)
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Figure 8: pPhase space of 720 electrons after their passage through a resonator with RF field
g
profile shown in Fig.1. Here p 2 9, F = 0.125, A = 0.5, and 5, = 0.06.
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function for small { and an approximately periodic function for large (. The per-
turbation begins at (;; = 0 and ends at (o = 100. Its form is shown in Fig.
1. For computational purposes we have interpolated this true function f({) by a
cubic spline. We integrate the dynamical system (5), which now is a nonhamil-
tonian system due to the finite interaction length, by means of the Runge-Kutta
method with high accuracy to avoid the numerical noise. The transit time of the
electron in a realistic resonator is very short and the motion is not bounded by the
potential. For this reason we cannot use the Poincaré section to analyze correctly
the solution of (5), because the number of points is not sufficient to construct the
KAM tori for each initial condition. As a result, it is very difficult to say whether
the solutions are chaotic or not. However, if we accept the fact that sensitive
dependence of the solution of the system of differential equations on initial condi-
tions is one of the definitions of chaos, we can try to detect a possible exponential
divergence between the trajectories. For this purpose we have computed for the
parameter values A = 0.5 and F = 0.125 real trajectories of 720 electrons with
different initial conditions Q and Py distributed uniformly in [0, 27] on the unit
circle defined by \/Q3 + P2 = 1. Fig. 8 shows the corresponding phase space of
these electrons after their passage through the resonator.

Recall that the variables @ and P in our dynamical system represent the com-
ponents of the dimensionless transverse momentum of the electron. Two distinct
domains can be seen: the electrons beyond the unit circle have been accelerated
and the electrons inside the unit circle have been decelerated. This means that
for some particular initial conditions there should be a transition between the two
kinds of motion. For almost all of the electrons the motion is never chaotic which
means that for very close initial conditions the corresponding trajectories remain
close. The trajectories may become sensitive with respect to the initial condi-
tions in the vicinity of the transition points. To detect accurately these points,
we show in Fig. 9 the transversal momentum at the resonator end as a function
of the entrance angle. We observe three transition points: at ~ 34, ~ 70, and
~ 187 degrees. The point at ~ 34 is of special interest: in this region the elec-
tron is either strongly decelerated or accelerated. In Fig. 10 we show |p| as a
function of the initial angle within the sharp peak around 34 degrees. It is inter-
esting to observe that the structure in this narrow region is very similar to the
structure seen in Fig. 9. In a certain sense this self-similarity can be interpreted
as a trace of chaos (fractal-dimensions). Moreover, in Figs. 11 and 12 we show
in two and three dimensions respectively the motion of two electrons with very
close entrance angles: 33.4 and 33.9 degrees. For the entrance angle equal to 33.4
degrees the electron is accelerated and it rotates always in the same direction.
However, for the entrance angle equal to 33.9 degrees the electron is slowed down,
and it changes its direction of rotation with respect to RF field. This change
occurs when the electron travels through the region where the aperiodic part of
f(¢) becomes periodic. If we recall that sensitive dependence of the solutions on
initial conditions is one of the definitions of chaos, we can conclude that in the
vicinity of this entrance angle the trajectories of the electrons may become chaotic.
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Figure 9: Transverse momentum of electrons at the resonator end as a function of the initial
angle. Here p = 9, F = 0.125, A = 0.5, and 1, = 0.06.
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Figure 10: Same as Fig. 9, but in a narrow region around the first peak.
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1.5-1-0.50 0.5 1 1.5
Q

Figure 11: Two-dimensional trajectories of two electrons with close initial conditions: 33.4
and 33.9 degrees. The two trajectories begin at (Q = 0.832; P & 0.554) and diverge at (Q =
—0.6; P =~ 0.25).

Figure 12: Same as Fig. 11 but in three dimensions.
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IV. Efficiency plots.

The knowledge of the electron energy distribution at the exit from the inter-
action space (Fig. 9) is important in designing depressed collectors. For smooth
distributions less stages of retarding potential are needed. The question arises
about the correlation between the efficiency and smoothness which we define as

follows:
dp(cout)

2
5= /0 8,

To illustrate this point, we have calculated for a realistic RF field profile with
g = 12.8 efficiency, 7., and smoothness, S, contours (Fig. 13). It is seen that
generally the regions of high efficiencies and high smoothness (small S) overlap,
albeit some compromise is possible. For example, in Fig. 14 we show energy
distributions for three operating points: i) A = 055, F = 0.11, 5, = 0.78,
S=21i) A =035F =004 5, =034, S =14, iii) A = 0.35, F = 0.10,
Ny~ 0, S =4.6.

8o (25)

V. Concluding remarks

1. Using the powerful Hamiltonian method we have classified electron tra-
jectories in an idealized gyrotron resonator (infinitely long and with an idealized
force in the form of trigonometric functions). We have proved that in this case the
system is fully integrable and that no chaotic motions are possible. This indirectly
confirms the results of [4] who find no chaotic behavior of electron trajectories.
They consider a plane traveling wave of constant amplitude as a force which prac-
tically corresponds to our case discussed in Sec. IIT A.

2. In real (finite) gyrotron resonators with a realistic strong aperiodic force
we have found that the motion of the electrons in the vicinity of some particular
initial angles is very sensitive with respect to the exact value of the initial angle.
This sensitivity allows us to conclude that the trajectories of the electrons for these
particular initial conditions may become chaotic. For other values of the control
parameters u, I, and A we can expect a similar chaos-like behavior in vicinities of
other initial angles. In practical terms this means that there are electrons whose
energy is unpredictable after they leave the interaction region. The larger the
current, the larger is the number of such electrons.

3. For a specific value of 1 = 12.8 we have calculated efficiency and smoothness
contours in the A — F' plane and have found that the regions of high efficiencies
in general coincide with the regions of high smoothness.
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