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Generalized gyrotron theory with inclusion of adiabatic electron
trapping in the presence of a depressed collector
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The effect of electrostatic electron trapping in the presence of a depressed collector
has been included in gyrotron efficiency computations. The results are presented
as general contour plots in the control parameter plane. A condition for trapping
is derived in terms of the retarding voltage. The overall electron efficiency as a
function of the retarding voltage has been calculated for a representative set of control
parameters including the effect of electron velocity spread. It is found that the onset
of trapping seriously decreases the efficiency. c© 2001 American Institute of Physics.
[DOI: 10.1063/1.1350667]

I. INTRODUCTION

In a gyrotron with a depressed collector there is a risk
for electrons to be reflected back towards the resonator
by the retarding potential. This reflection takes place
whenever the height of the potential barrier exceeds the
longitudinal kinetic energy of an electron in the collec-
tor region. In Ref. 1 it was found via simulation that
the electrons are eventually swept out to the collector by
the high-frequency field, and no significant charge accu-
mulation would thus result. However, how the reflected
electrons affect the gyrotron efficiency has not been re-
ported.

Electron reflection by the retarding electrostatic poten-
tial can be regarded as an adiabatic process, if it takes
place over a short distance compared to the Larmor pe-
riod of the electron, that is, if ∆zret � zL as stated in
Ref. 2. Here ∆zret is the spatial extension of the retard-
ing region, and zL = p‖/eBcoll is the Larmor period of
an electron with a momentum component p‖ in the direc-
tion of the magnetic field (Bcoll) in the collector region.
In this adiabatic case the reflected electron is expected
to pass the resonator backwards, to reflect from the neg-
ative potential of the gun and to interact with the RF
field again, following closely the magnetic field lines on
its way. This process continues until the electron’s energy
at the cavity end suffices to carry it to the collector.

II. GYROTRON EFFICIENCY

The evolution of the transverse momentum of the elec-
tron p in a gyrotron resonator is governed by the equation

dp

dζ
+ i(∆ + |p|2 − 1)p = if(ζ)F, (1)

when operation at the first harmonic is considered. The
initial condition is p(ζ0) = exp(iϑ0) with 0 ≤ ϑ0 ≤ 2π.
Here p is normalized to its initial absolute value, ζ is
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the dimensionless axial coordinate, ∆ is the frequency
mismatch, f(ζ) is the high-frequency field profile in the
resonator, and F is the coupling factor between the beam
and the field. This description is the so-called cold-cavity
approximation, in which f does not depend on the elec-
tron motion but only on the geometry of the resonator.
In this case the field is well approximated by a Gaussian:

f(ζ) = exp

[

−
(

2ζ

µ
−
√

3

)2
]

, (2)

the parameter µ being the dimensionless length of the
resonator. Equation (1) is to be solved from ζ0 = 0 to

ζout =
√

3µ.
For a detailed description of the quantities p, ζ, ∆, F ,

and µ, see e. g.3–5. The electron perpendicular efficiency
η⊥ can be calculated using the solutions of (1) by means
of the expression

η⊥ = 1 − 1

2π

∫ 2π

0

|p(ζout)|2 dϑ0. (3)

From this, the total electron efficiency is obtained by

ηel =
α2

1 + α2
η⊥, (4)

where α = β⊥0/β‖0 is the pitch factor and β⊥0 and β‖0

are dimensionless transverse and longitudinal velocities
of the electron at the entrance to the cavity. Using a
depressed collector at the potential Ucoll one can increase
the efficiency by the factor Ucath/(Ucath − Ucoll), where
Ucath is the accelerating voltage.

III. VELOCITY SPREAD

We handle the transverse velocity spread of electrons
in line with Ref. 6. The quantities µ, F , and ∆ can be
expressed as

µ = Cβ
µ

β2
⊥

β‖
, (5)
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F =
Cβ

F

β3
⊥

, (6)

∆ =
Cβ

∆

β2
⊥

, (7)

where Cβ
µ , Cβ

F and Cβ
∆ do not depend on β⊥. The longitu-

dinal velocity β‖ can be written using the perpendicular
velocity β⊥ and the relativistic factor γ of the electrons
as β‖ = (1 − 1/γ2 − β2

⊥)1/2. Introducing the error ε of
the transverse velocity we find that

µβ
ε = Cβ

µ

β2
⊥0(1 + ε)2

√

1 − 1/γ2 − β2
⊥0(1 + ε)2

, (8)

F β
ε =

Cβ
F

β3
⊥0(1 + ε)3

, (9)

∆β
ε =

Cβ
∆

β2
⊥0(1 + ε)2

, (10)

αβ
ε =

β⊥0(1 + ε)
√

1 − 1/γ2 − β2
⊥0(1 + ε)2

. (11)

These can be written as

µβ
ε =

µ(1 + ε)2√
1 − 2α2ε − α2ε2

, (12)

F β
ε =

F

(1 + ε)3
, (13)

∆β
ε =

∆

(1 + ε)2
, (14)

αβ
ε =

α(1 + ε)√
1 − 2α2ε − α2ε2

. (15)

IV. CONDITION FOR ELECTRON TRAPPING

To connect the retarding potential with the dimension-
less momentum p(ζout) obtained by solving (1) numeri-
cally, recall that all momenta are normalized to the ini-
tial value of transverse momentum: p = P⊥/P⊥0 and
p‖ = P‖/P⊥0. Using the relation between the total en-
ergy of an electron and the accelerating voltage Ucath,

(P2
⊥0 +P2

‖0)c
2 +(mec

2)2 = W 2
tot = (mec

2 + eUcath)
2,

and equations for the momentum components as a func-
tion of normalized velocity,

P⊥0 = β⊥0γmec and P‖0 = β‖0γmec

together with γ = (1−β‖0
2−β⊥0

2)−1/2 and the definition
of the pitch factor α = β⊥0/β‖0 we find that

P⊥0 = αmec

√

2φcath + φ2
cath

1 + α2
(16)

and

P‖0 = mec

√

2φcath + φ2
cath

1 + α2
. (17)

Potentials have been normalized as φ = eU/mec
2.

Between the cavity end and the retarding potential
hill the electron experiences a diverging magnetic field
but no electric field. Its total kinetic energy is therefore
conserved,

P⊥(z)2 + P‖(z)2 = const, (18)

but the transverse motion slows down along with the
weakening of the magnetic field2:

P⊥(z)2

B(z)
= const. (19)

In the vicinity of the collector the magnetic field Bcoll

is weak and practically constant. Applying the conser-
vation laws (18) and (19) at the cavity end (z = zout,
B = Bcav) and at the collector (B = Bcoll), we obtain
the expression for the axial kinetic energy of the electron
at the collector

W‖(zcoll)

=

√

[

P‖(zout)2 +

(

1 − Bcoll

Bcav

)

P⊥(zout)2
]

c2 + (mec2)2

− mec
2,

which is available for surpassing the retarding potential
Ucoll. Those electrons, for which

W‖(zcoll) > eUcoll,

reach the collector. For the (complex) dimensionless
transverse momentum p(ζout) = P⊥(zout)/P⊥0 this con-
dition reads

|p(ζout)| >
mec

P⊥0

√

2φcoll + φ2
coll −P2

‖0/m2
ec

2

1 − Bcoll/Bcav
.

Using (16) and (17), this critical value can be expressed
as a function of the voltages, magnetic fields, and the
pitch factor:

|p(ζout)| >
1

α
√

1 − b

√

2φcoll + φ2
coll

2φcath + φ2
cath

(1 + α2) − 1

≡ pcut-off . (20)

Here b = Bcoll/Bcav. We call the right-hand side
pcut-off since all electrons with |p(ζout)| < pcut-off are
“cut off” from the spectrum by reflection. In the case
2φcoll +φ2

coll < P2
‖0/m2

ec
2 the initial longitudinal momen-

tum alone suffices to bring the electron to the collector
and we state that pcut-off = 0.
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FIG. 1: The contours of the perpendicular efficiency η⊥ with
pcut-off = 0.
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FIG. 2: The contours of the perpendicular efficiency η⊥ with
pcut-off = 0.2. The dashed line is the boundary between the
regions with and without trapping.

V. COMPUTATIONS

A. General efficiency plots

We model the process of successive interactions and
reflections by integrating numerically the gyrotron equa-
tion (1) and repeating the integration until the electron
reaches the collector. The motion of an electron travel-
ing backwards in the resonator can be most conveniently
found by performing the integration with the standard
routine from ζ = ζout to ζ = ζ0 with a negative step size.

The time that the electrons spend outside the res-
onator between two successive interactions is long com-
pared to their Larmor period. We therefore completely
lose the information about the phase of rotation. The
energy, instead, is conserved due to the assumption of
adiabaticity. These facts are taken into account by keep-
ing the absolute value of momentum fixed and random-
izing the phase angle each time before starting a new
integration.

The need for giving electrons a new, random phase
arises from the fact that Eq. (1) is symmetric with respect
to reversal of the direction of ζ. Namely, if p1(ζ) is the
unique solution of (1) corresponding to the initial value
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FIG. 3: The contours of the perpendicular efficiency η⊥ with
pcut-off = 0.4. The dashed line is the boundary between the
regions with trapping (above) and without trapping (below).

p1(0) = p0, and p1(ζout) = pout, then p′1(ζ
′) = p1(ζ)

(where ζ ′ = ζout−ζ) will satisfy the initial value problem

dp

dζ ′
+ ip(∆+ |p|2 − 1) = iFf ′(ζ ′), p(ζ ′ = 0) = pout

and yield p′1(ζout) = p0 again. Without phase randomiz-
ing the electrons would follow the same trajectory back
and forth within the limits of numerical accuracy.

The results of the computations are presented in
Figs. 1–3 as contour plots of perpendicular efficiency η⊥
in the (µ, F )-plane. In Fig. 1 the standard plot without
electron trapping is shown for comparison. The param-
eter ∆ is set in each point to the optimum value with
respect to the perpendicular efficiency when pcut-off = 0.
This value of ∆ is then used for all other values of pcut-off .
In the examples of the efficiency plots with pcut-off 6= 0 in
Figs. 2 and 3 we also indicate the boundary of the region
where trapping occurs.

B. Computations with velocity spread

To model the trapping effect more realistically, we
chose three representative combinations of µ and F [(µ =
10, F = 0.10), (µ = 17, F = 0.125), (µ = 25, F = 0.075)]
and computed the electron efficiency as a function of re-
tarding voltage, simultaneously introducing a spread in
the electron transverse velocity. This was done by apply-
ing (20) with (12)–(15). A Gaussian,

fe(β⊥) =
1

σ
√

2π
exp

[

− (β⊥ − β⊥0)
2

2σ2

]

, (21)

is a suitable approximation for the velocity distribution:
see Ref. 7. The relation between the rms deviation σ and
the velocity spread δβ⊥ can be written as

δβ⊥ = 1.8
√

2σ, (22)

where δβ⊥ is defined as

δβ⊥ =
1

2

(

β⊥,max − β⊥,min

β⊥,center

)

. (23)
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FIG. 4: The electron efficiency as a function of retarding po-
tential at µ = 10.0 and F = 0.10, calculated with statistically
independent variables.
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FIG. 5: The electron efficiency as a function of retarding po-
tential at µ = 17.0 and F = 0.125, calculated with statisti-
cally independent variables.

In addition to an ideal beam with zero spread we used
δβ⊥ = 10 % and 20%. The corresponding values of σ
are 0.0393 and 0.0786. From (12) it follows that |ε|
must be smaller than εmax = (1 + 1/α2)1/2, which is
related to the fact that the physical boundaries of β⊥ are
0 ≤ β⊥ ≤ (1−1/γ2)1/2. In practice the efficiency was cal-
culated by varying ε between −0.95 εmax and +0.95 εmax

and averaging the corresponding efficiencies with a prop-
erly normalized weight function of the form (21). This
method is an equivalent alternative for the Monte Carlo
approach used in Ref. 6. However, it suffers less from
random fluctuations with equal computational effort.

As in Ref. 6, the quantities µβ
ε , F β

ε , and ∆β
ε were

treated as statistically independent variables assigning
a different ε to each of them. This independence of er-
rors for the three quantities µ, F , and ∆ simulates the
fact that in real gyrotrons a change of β⊥ always influ-
ences other gyrotron operating parameters. For exam-
ple, the field profile (the effective length of the cavity),
the quality factor of the cavity, and the operation fre-
quency depend on the properties of the electron beam,
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FIG. 6: The electron efficiency as a function of retarding po-
tential at µ = 25.0 and F = 0.075, calculated with statisti-
cally independent variables.

which means that the parameters µ, F , and ∆ actually
are complicated functions of β⊥. Quantitatively this can
be taken into account only in self-consistent calculations,
which is beyond the scope of the present theory. The
results of the present calculations are shown in Figs. 4–6.

However, if we make the most conservative but less re-
alistic assumption that the variation of β⊥ does not affect
any other quantity, we should use one and the same ε in
calculating µβ

ε , F β
ε , ∆β

ε , and αβ
ε according to Eqs. (12)–

(15). In this approach, which we call statistically depen-
dent, we also calculated pcut-off from (20) for each β⊥

using the corrected α of Eq. (15). The results of such
calculations are presented in Figs. 7–9. It is obvious that
here the efficiency deterioration due to velocity spread is
much smaller than in the former case.

All computations have been performed for α = 1.5 and
Ucath = 90kV.
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FIG. 7: Same as Fig. 4, but with statistically dependent vari-
ables.

VI. CONCLUSIONS

A formalism has been developed for inclusion of the ef-
fect of electrostatic trapping of electrons in the presence
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FIG. 8: Same as Fig. 5, but with statistically dependent vari-
ables.
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FIG. 9: Same as Fig. 6, but with statistically dependent vari-
ables.

of a depressed collector into gyrotron efficiency calcula-
tions. Several representative sets of gyrotron parameters
have been chosen as examples.

It is evident from Figs. 2 and 3 that the trapping ef-
fect is more probable and pronounced in the operating
regimes with high perpendicular efficiency. Indeed, here
many electrons have very low rest energies at the exit
from the cavity. They make the largest contributions to
efficiency. At the same time these “good” electrons have
the strongest tendency to become trapped. For example,
at the point of the highest efficiency (µ = 17, F = 0.125)
with Ucoll = 33kV some of the “best” electrons pass the
cavity six times before they acquire the energy from the
RF field which is needed for leaving the trap. It is also
seen (Figs. 5 and 8) that just for these µ and F values the
increase of the efficiency due to the retarding potential
as Ucath/(Ucath − Ucoll) breaks down already at ∼ 30 kV
because of the onset of trapping, while in two other cases
trapping begins to manifest itself at higher collector volt-
ages. It is also observed that generally the velocity spread
tends to smooth the transition to the trapping region.

In gyrotrons whose cavities have a low quality factor
the dependences shown in Figs. 4–6 should be observed,
while in the case of high quality factors weaker depen-
dence on the velocity spread such as shown in Figs. 7–9
should be expected.
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