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Nonstationary oscillations in gyrotrons
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The onset of stochastic oscillations in gyrotrons is studied by means of the self-consistent
theory describing nonstationary processes. Complicated alternating sequences of regions
of stationary, automodulation, and chaotic oscillations are found in the plane of the gener-
alized gyrotron variables: cyclotron resonance mismatch and dimensionless current. The
results of the investigations are important in connection with attempts to increase the
output power of gyrotrons by raising the current. c© 2001 American Institute of Physics.
[DOI: 10.1063/1.1402173]

I. INTRODUCTION

In connection with striving to develop high-frequency
high-power gyrotrons needed for modern fusion reac-
tors it is appropriate to study under what circumstances
chaos-like processes can occur in gyrotrons. Usually such
operation regimes are undesirable for plasma physics ap-
plications. Here two types of stochasticity in gyrotrons
should be distinguished: i) stochastic electron trajecto-
ries, ii) stochastic rf oscillations.

Stochastic electron trajectories have been studied in
Refs. 1–3. In Ref. 1 it was found that in the case of a
plane traveling wave of constant amplitude as force acting
on electrons in a resonator no chaotic motions are possi-
ble. In Ref. 2 it was proved that in the cold-cavity ap-
proximation when the high-frequency field is represented
by a Gaussian-type function, the solutions of the gy-
rotron equation are asymptotically equal to the solutions
of the corresponding unforced equation. This means that
chaos, which, in principle, can develop in a resonator for
some values of control parameters, can be only transient,
i.e., electrons again follow regular trajectories once they
leave the interaction space. In Ref. 3 electron trajecto-
ries have been classified from the mathematical point of
view and it has been shown that in real gyrotron res-
onators with a realistic strong aperiodic force the motion
of the electrons in the vicinity of some particular initial
angles is very sensitive with respect to the exact value
of the initial angle. This sensitivity makes it possible to
conclude that the trajectories of the electrons for these
particular initial conditions may become chaotic, which
means that there are electrons whose energy is virtually
unpredictable after they leave the interaction space. The
larger the current, the larger is the number of such elec-
trons. It is clear that this adversely affects operation
of depressed collectors and that such operation regimes
should be avoided.

Stochastic rf oscillations have been studied in Refs. 4–
6. In Ref. 4 equations have been derived which describe
transition processes in rf generators operating near cut-
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off. Also the so-called reflectionless boundary condition
has been formulated for the corresponding parabolic par-
tial differential equation. In Refs. 5 and 6 this theory
has been applied for gyrotrons and some sample calcu-
lations have been performed showing that in addition to
stationary oscillations also periodic automodulation and
stochastic oscillations are possible.

In the present work we reconsider the theory devel-
oped in Refs. 4–6. In particular, we use a much sim-
pler method for solving the corresponding equations. By
elaborate calculations we find complicated alternating se-
quences of regions of stationary, automodulation, and
chaotic oscillations in the plane of the generalized gy-
rotron variables: cyclotron resonance mismatch and di-
mensionless current. The influence of the magnetic field
tapering and the velocity spread of electrons on the topol-
ogy of these regions is also examined.

II. GYROTRON EQUATIONS

To describe self-consistently the nonstationary oscil-
lations one has to use the system of partial differential
equations derived in Ref. 4:
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where p is the complex transverse momentum of the
electron normalized to its initial absolute value, ζ =
(β2

⊥0ω/2β‖0c)z is the dimensionless coordinate, β⊥0 =
v⊥0/c and β‖0 = v‖0/c are normalized electron veloci-

ties, ∆ = 2(ω − ωc)/β2
⊥0ω is the frequency mismatch,

ωc/2π = 28B/γrel is the electron cyclotron frequency in
GHz, B is the magnetic field in T, γrel is the relativis-
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FIG. 1: Topology of different
kinds of oscillations of a gy-
rotron in the ∆−I plane. White
regions correspond to stationary
oscillations, grey regions corre-
spond to automodulation, and
dark regions to chaotic oscil-
lations. The contours of con-
stant efficiency are shown by the
dashed curves. The point of the
maximum efficiency ηmax

⊥ = 0.75
is marked by the cross.
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FIG. 2: I = 0.01, ∆ = 0.60. (a) Rf field amplitude at the resonator end as a function of time. (b) The stationary field profile
in the cavity. (c) Phase space of 72 electrons after their passage through a resonator with a rf field profile shown in (b). The
momentary and time-averaged perpendicular efficiencies coincide: η⊥ = 〈η⊥〉 = 0.75.

Here I0 is current in Amperes, J is the Bessel function, m
is the azimuthal index of the mode, λ is the wavelength,
Rel is the electron beam radius, and ν is the zero of the
derivative of the Bessel function. This description is valid
for operation at the fundamental cyclotron resonance.

The system of equations (1) has to be supplemented
by the standard initial condition for the momentum,
p(0) = exp(iϑ0) with 0 ≤ ϑ0 ≤ 2π, and by the boundary
condition for the field at the entrance to the interaction
space:

f(0, τ) = 0, (3)

which means that at the entrance the field must vanish.
At the exit from the interaction space (ζ = ζout) the
so-called reflectionless boundary condition is applied:

(

f(ζ, τ) +
1√
πi

∫ τ

0

1√
τ − τ ′

∂f(ζ, τ ′)

∂ζ
dτ ′

)∣

∣

∣

∣

ζ=ζout

= 0.

(4)

The electron perpendicular efficiency η⊥ which de-
scribes the extraction of the electron orbital momentum

from the beam is given by the expression

η⊥ = 1 − 1

2π

∫ 2π

0

|p(ζout)|2 dϑ0. (5)

III. NUMERICAL METHOD

In Refs. 4–6 an unnecessarily complicated method
based on Laplace transformations was used to solve the
system of equations (1). We abandoned that method in
favor of a much simpler and more transparent method
based on the fully implicit scheme of solving parabolic
differential equations:

fn+1
j+1 − 2fn+1

j + fn+1
j−1

h2
− i

fn+1
j − fn

j

∆τ
+ δfn+1

j = gn
j ,

n = 0, 1, . . . ; j = 1, . . . , N − 1, (6)

where h is the spatial step, ∆τ is the temporal step,
N = ζout/h, τn = n∆τ , and

gn
j =

s
∑

k=1

Ip(ζj , τn, ϑ
(k)
0 )

s
. (7)
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FIG. 3: I = 0.15, ∆ = −0.80, η⊥ = 〈η⊥〉 = 0.15. Other conventions same as in Fig. 2.
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FIG. 4: I = 0.15, ∆ = −0.30, τ = 245, η⊥ = 0.30, 〈η⊥〉 = 0.04. Other conventions same as in Fig. 2.

By noting that the singularity in the boundary condition
(4) can be easily isolated if the function ∂f(ζ, τ ′)/∂ζ sat-
isfies the Lipschitz condition in the vicinity of τ , we can
write a simple difference approximation of (4):
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+
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As a result we obtain a linear algebraic system of equa-
tions from which we can find fn+1

j , j = 1, 2, . . . , N on the
basis of the known values of fn

j :
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This system of equations is tridiagonal. It can be eas-
ily solved by the simple routine described in Ref. 7 by
generalizing it to complex variables.

IV. COMPUTATIONS

The classification of the solutions of Eq. (1) is based
on two criteria: temporal periodicity and variations of

the amplitude of f . “Automodulation” refers to all pe-
riodic solutions, which we can detect by studying the
autocorrelation function of the output. The autocorrela-
tion function R(t) of A(τ) = |f(ζout, τ)| over the interval
(n1∆τ, n2∆τ) is defined as

R(n∆τ) =
1

n2 − n1 − n

×
n2−n
∑

k=n1

[A(k∆τ) − 〈A〉] [A(k∆τ + n∆τ) − 〈A〉]
〈A2〉 − 〈A〉2 ,

(10)

where n∆τ is delay and 〈A〉 denotes the average of A(τ)
computed over the interval (n1∆τ, n2∆τ). Whenever
R(n∆τ) shows a maximum R(T ) > 0.95 [excluding R(0)
= 1], the corresponding solution A(τ) is interpreted to
be periodic with a period T .

Aperiodic solutions were further divided into chaotic
(T → ∞) and stationary (T = 0) ones. Based on a
large number of numerical results, we concluded that the
function A(τ) varies over a wide range of values when-
ever chaos appears. On the other hand, a stationary
solution means that A(τ) stays constant. We can easily
distinguish between these types of aperiodic solutions by
imposing a numerical condition

maxA(τ) − min A(τ)

max A(τ)
< 0.1 (11)

for stationary solutions, leaving the opposite for chaos.
For both the autocorrelation function and the amplitude
variations the time interval from τ1 = 300 to τ2 = 500
was used. This choice is a good compromise between
avoiding initial transient oscillations in the data and
performing the computations in a reasonable time. In
some cases very slowly decaying oscillations confused the
above-described automatic procedure and corrections by
hand were needed.
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FIG. 5: I = 0.15, ∆ = −0.05, τ = 200, η⊥ = 0.07, 〈η⊥〉 = 0.06. Other conventions same as in Fig. 2.
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FIG. 6: I = 0.15, ∆ = 0.30, η⊥ = 〈η⊥〉 = 0.19. Other conventions same as in Fig. 2.

In the calculations we assumed that δ(ζ) = 0, ζout =
15, h = 0.25, ∆τ = 0.02, and used the following possible
initial condition:

f(ζ, 0) = 0.1 sin

(

π
ζ

ζout

)

(12)

which simulates the axial field profile with only one max-
imum.

V. RESULTS

In Fig. 1 we show the topology of different kinds of
oscillations of a gyrotron in the ∆− I plane and the cor-
responding constant efficiency contours. Qualitatively we
confirm the result obtained earlier in Refs. 5 and 6 that at
low currents and in regions of high efficiency oscillations
are stationary. [For the evolution of the output signal
at the point of maximum efficiency, see Fig. 2(a).] How-
ever, the boundary between stationary and nonstationary
oscillations (Fig. 6 of Ref. 5) gives no indication about
the complicated topology beyond it. In particular, we
find alternating sequences of stationary solutions, which
is an fascinating mathematical property of the consid-
ered equations. For example, at ∆ = −0.8 or ∆ = 0.05
oscillations become again stationary at larger currents.

It is interesting to examine the axial structure of the
field profile in the resonator and the phase space of
the electron transverse momentum at the resonator exit.
Figs. 2(b) and 2(c) illustrate these structures at the point
of maximum efficiency (I = 0.01, ∆ = 0.60). The espe-
cially strong bunching of electrons which leads to high
efficiency is clearly seen in Fig. 2(c). The case of reso-
nance with the backward wave (∆ < 0) is illustrated in
Fig. 3; here I = 0.15 and ∆ = −0.80. The field profile
has many maxima as a consequence of superposition of
the backward wave with a forward wave resulting from a
strong reflection at the input. In chaotic and automodu-
lation regions illustrated in Fig. 4 (I = 0.15, ∆ = −0.30)
and Fig. 5 (I = 0.15, ∆ = −0.05), respectively, the field

profile varies very rapidly with time. To illustrate mo-
mentary field and phase space structures we have chosen
arbitrary time values: τ = 245 and τ = 200, respectively.
Of course, in the case of automodulation and stochastic-
ity the momentary efficiencies deviate strongly from the
time-averaged efficiencies. In Fig. 6 (I = 0.15, ∆ = 0.30)
we show the case of stationary oscillations with very low
efficiency. It is seen that in this case the field has two
maxima [Fig. 6(b)] and that |p| > 1 for many electrons
[Fig. 6(c)]. Finally in Fig. 7 (I = 0.15, ∆ = 0.40) we show
automodulation with a small amplitude. The structures
of the field profile and of the phase space are very similar
to those shown in Fig. 6.

From Fig. 1 it is obvious that automodulation and
chaotic oscillations occur at lower currents for negative
values of ∆. For this reason it can be expected that a
positive gradient of the magnetic field in the resonator
would lower the current at which stochastic oscillations
appear, because increasing magnetic field leads to de-
creasing effective ∆. Indeed, we can write

∆taper ≈ ∆ ∓ 2

β2
⊥

ζ

ζout
εB (13)

where εB = (Bout −B0)/B0. Assuming a 5% increase of
the magnetic field inside the resonator (εB = 0.05) and a
typical value β⊥ = 0.42, we obtain

∆taper = ∆ − 0.567
ζ

ζout
. (14)

Conversely, even a moderate magnetic field decrease
would raise the threshold current for stochastic oscilla-
tions and thus improve the stability of gyrotron operation
with respect to onset of stochastic oscillations.

The presented examples were also computed taking
into account the velocity spread of electrons.8 In general,
the inclusion of spread changed the results very little.
The solutions became qualitatively different only in the
vicinity of boundaries of the regions shown in Fig. 1. This
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FIG. 7: I = 0.15, ∆ = 0.40, τ = 500, η⊥ = 0.22, 〈η⊥〉 = 0.23. Other conventions same as in Fig. 2.

demonstrates that Fig. 1 can be used to roughly estimate
the behavior of a gyrotron even in the presence of a 20%
velocity spread.

VI. FEASIBILITY OF EXPERIMENTAL CONFIRMATION
OF THE RESULTS

Let us now estimate at what currents automodulation
or chaos can be expected in realistic devices. As an
example we consider the 2.2MW, 165GHz coaxial cav-
ity gyrotron developed at Forschungszentrum Karlsruhe
(Ref. 9). This gyrotron is operating in the TE31,17 mode
with a gun which delivers 84A current and whose pitch
factor at 90 kV is 1.3. Estimates based on Eq. (2) give
I = 0.003, and the normalized interaction length µ = 17
with a 18mm cavity. On the one hand, this value of I
shows that there is a large margin to raise the output
power of a gyrotron by raising the current. On the other
hand, it is clear that this gyrotron cannot be used to
test the predictions shown in Figs. 3–7. For this purpose
one would need to increase the current of the gun up to
∼ 5000A which, of course, is not realistic. As is evident
from Eq. (2), the dimensionless current is inversely pro-
portional to αβ5

⊥, where α = β⊥0/β‖0. It is interesting to
note that during the startup of this gyrotron the working
mode TE31,17 passes through the automodulation region
(∆ = −0.25 and I = 0.042 at 60 kV; ∆ = 0.01 and
I = 0.027 at 65kV) before reaching the operating point
∆ = 0.47 and I = 0.003 at 90kV. The calculations
performed in Ref. 9 show that due to mode competition
these automodulation oscillations probably cannot be ob-
served, since it is expected that they will be suppressed
by competing modes which have much more favorable
values of ∆ and I . Such oscillations could be observed in
special experiments in which the magnetic compression
and thus the electron orbital velocity in the cavity would
be decreased leading to large increase of I .

It should be easier to check the predictions shown in
Fig. 1 in gyrotrons operating in low-order modes, be-
cause for such modes the dimensionless current is much
larger for comparable values of the current of the gun.
Moreover, mode selection becomes simpler due to a rarer
spectrum.

In some special applications (material processing,
special-purpose radars) chaotic oscillations are desirable.
From Fig. 1 it is obvious that under normal circumstances
(reasonable currents, high efficiency, high power) stochas-
tic oscillations cannot be generated. However, it is known
(Ref. 10) that artificially introduced reflections signifi-
cantly decrease currents at which stochasticity begins to
manifest itself. Within the framework of the theory con-
sidered in this paper such reflections can be modeled by
means of the function δ(ζ).

VII. CONCLUSIONS

The onset of stochastic oscillations in gyrotrons has
been reconsidered. A simple and straightforward numer-
ical method for solving the system of underlying partial
differential equations has been used. It has been found
that the topology of the domains of different kinds of
oscillations is more complicated than envisaged earlier.
In particular, alternating sequences of regions of station-
ary, automodulation and chaotic regions are found in the
plane of the generalized gyrotron variables: frequency
mismatch and dimensionless current. There is a large
margin for increasing output power by raising the cur-
rent without a risk of induction of stochastic oscillations.
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