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ABSTRACT: A subset S of a finite Abelian group G is said to be a sum cover
of G if every element of G can be expressed as the sum of two not necessarily
distinct elements in S, a strict sum cover of G if every element of G can be
expressed as the sum of two distinct elements in S and a difference cover of
G if every element of G can be expressed as the difference of two elements in
S. For each type of cover, we determine for small k the largest Abelian group
for which a k-element cover exists. For this purpose we compute a minimum
sum cover, a minimum strict sum cover, and a minimum difference cover for
Abelian groups of order up to 85, 90, and 127, respectively, by a backtrack
search with isomorph rejection.

KEYWORDS: Additive base, Backtrack search, Difference set, Covering
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1 INTRODUCTION

In this article, all groups are finite even when not explicitly mentioned. Let
S be a subset of an Abelian group G and let s (S) = {a + b | a, b ∈ S},
ss (S) = {a, b | a, b ∈ S, a 6= B} and d (S) = {a− b | a, b ∈ S}. Then S is
said to be a sum cover ofG if s (S) = G, a strict sum cover ofG if ss (S) = G,
and a difference cover of G if d (S) = G. Conversely, S is a sum packing
of G if |s (G)| =

(

|S|+1
2

)

, a strict sum packing of G if |ss (G)| =
(

|S|
2

)

and a
difference packing of G if |d (G) \ {0}| = |S| (|S| − 1).

Graham and Sloane [3] consider, among related problems, packing and
covering problems in cyclic groups. They determine the largest cyclic group
that has a k-element sum cover for k ≤ 9, the largest cyclic group that has a
k-element strict sum cover for k ≤ 10, the smallest cyclic group that admits
a k-element sum packing for k ≤ 12 except k = 11, and the smallest cyclic
group that admits a k-element strict sum packing for k ≤ 10.

A most natural way of determining a maximum packing or a minimum
cover of a group is to combine bounds from constructions and counting ar-
guments with the results of a computer search. Swanson [11] gives some
constructions and computational results for maximum difference packings
of cyclic groups. Haanpää, Huima, and Östergård compute maximum sum
and strict sum packings of cyclic groups [5], and Haanpää and Östergård con-
sider maximum strict sum packings of Abelian groups. Fitch and Jamison [2]
give minimum sum and strict sum covers of small cyclic groups, and Wiede-
mann [12] determines minimum difference covers for cyclic groups of order
at most 133.

In Section 2 some definitions and bounds concerning sum and difference
covers and packings are presented. In Section 3 we describe the equivalence
of subsets of Abelian groups and a method for carrying out isomorph rejec-
tion. The search algorithm is described in Section 4, and the results are
summarized in Section 5.

2 DEFINITIONS AND BOUNDS

We define nss (k), ns (k), and nd (k) as the largest n such that an Abelian
group of order n has a k-element strict sum cover, sum cover, and difference
cover, respectively. Similarly, n′

ss (k), n′
s (k), and n′

d (k) denote the largest
n for which Zn has a k-element strict sum cover, sum cover, and difference
cover, respectively.

We also make the corresponding definitions for packings. We define vss (k),
vs (k), and vd (k) as the smallest n such that an Abelian group of order n ad-
mits a k-element strict sum packing, sum packing, and difference packing,
respectively. Also, we define v′ss (k), v′s (k), and v′d (k) as the smallest n such
that Zn admits a k-element strict sum packing, sum packing, and difference
packing, respectively.

Lemma 1 Any sum packing of an Abelian group G is also a difference pack-
ing, and conversely.
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Proof: Let S be a sum packing of G. By definition, for all {a, b} 6= {c, d}
with a, b, c, d ∈ S we have a + b 6= c + d. Therefore, for all a − d = c − b
with a, b, c, d ∈ S, a 6= d, and b 6= c we have {a, b} = {c, d}. As a 6= d and
b 6= c, we must have a = c and b = d, and (a, d) = (c, b).

Let S be a difference packing of G. For all (a, d) 6= (c, b) with a, b, c, d ∈
S, a 6= d and b 6= c we have a− d 6= c− b. Thus, for all a + b = c + d with
a, b, c, d ∈ S, a 6= d, and b 6= c it holds that (a, d) = (c, b), and therefore
{a, b} = {c, d}.

Corollary 1 By definition, vd (k) = vs (k).

A simple counting argument shows that

n′
d (k) ≤ nd (k) ≤ k (k − 1) + 1 ≤ vd (k) ≤ v′d (k) . (1)

Equality holds in (1) when every nonzero group element can be repre-
sented in exactly one way as the difference of two elements in a subset. In
such a case we have a difference set; a difference set is obviously both a dif-
ference cover and a difference packing. A well known construction by Singer
shows that n′

d (k) = k (k − 1) + 1 = v′d (k) whenever k− 1 is a prime power.
For more information on difference sets we refer the reader to Jungnickel’s
survey [7].

Similar counting arguments show that

n′
s (k) ≤ ns (k) ≤

(

k + 1

2

)

≤ vs (k) ≤ v′s (k)

and that

n′
ss (k) ≤ nss (k) ≤

(

k

2

)

≤ vss (k) ≤ v′ss (k) .

It is impossible for a sum cover or strict sum cover with more than very
few elements to cover every group element exactly once.

Theorem 2 For k ≥ 5, nss (k) <
(

k

2

)

< vss (k).

Proof: If equality would hold one one side, it would also hold on the other.
Suppose that vss (k) =

(

k

2

)

for some k. Then there must exist a k-element
strict sum packing of an Abelian groupG of order

(

k

2

)

. Haanpää and Östergård

[4] show that then |G| ≥
(

1 − 1
n2(G)+1

)

(k2 − 3k + 2), where n2 (G) is the

index of the subgroup of G that is formed by elements of order 2. If n2 (G) =
1, then all elements are of order two, 0 cannot be represented as the sum of
two distinct elements, and no strict sum cover exists. If n2 (G) ≥ 2, we have
|G| = 1

2
k (k − 1) ≥ 2

3
(k2 − 3k + 2), and thus k ≤ 8. The computational

results in Section 5 eliminate the cases 5 ≤ k ≤ 8.

Theorem 3 For k ≥ 3, ns (k) <
(

k+1
2

)

< vs (k).

Proof: Again, if equality would hold on one side, it would hold on the
other. Suppose vs (k) =

(

k+1
2

)

for some k. Since vs (k) = vd (k), we have
k (k − 1) + 1 ≤

(

k+1
2

)

= vs (k) = vd (k), and thus k < 3.
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3 ISOMORPH REJECTION IN ABELIAN GROUPS

In this section we define the concept of equivalence of subsets of Abelian
groups and find that the equivalence mappings form a group. This group
partitions subsets into orbits; from each orbit we choose the lexicographic
minimum of the orbit as the canonical representative. In the backtrack search
of Section 4, where covers are constructed by recursively extending subsets
by adding an element to them, it suffices to extend only canonical subsets.
In order to speed up the search, we describe a test which will recognize some
subsets as non-canonical.

3.1 Automorphisms of Abelian groups

An Abelian group G is a group where a + b = b + a for all a, b ∈ G. It is
well known that all finite Abelian groups are isomorphic to a direct product
of cyclic groups of prime power order. A primary Abelian group is an Abelian
group of prime power order; in such a group all direct factors have orders that
are powers of the same prime. Any Abelian group may be expressed as the
direct product of primary Abelian groups.

Let xφ denote the image of x under φ. For tuples and set use the in-

duced mapping: let (x1, . . . , xk)
φ =

(

xφ1 , . . . , x
φ
k

)

, and {x1, . . . , xk}
φ =

{

xφ1 , . . . , x
φ
k

}

. Let xH =
{

xh | h ∈ H
}

.

An automorphism of an Abelian group G is a bijection φ : G 7→ G such
that xφ + yφ = (x+ y)φ, or xφ + yφ = zφ iff x + y = z. Shoda described
the automorphisms of finite Abelian groups in [10]. In particular, a primary
Abelian group Zpe1 × · · · × Zpek , where p is a prime, and e1 ≥ · · · ≥ ek,
has automorphisms of the form φ : x 7→ Ax, where x is a column vector
that represents an element of an Abelian group in the obvious way, and A is
a k × k matrix of the form

A =











h11 pe1−e2h12 · · · pe1−enh1n

h21 h22 pe2−enh2n
...

. . .
...

hn1 · · · · · · hnn











where det (A) 6= 0 mod p and hij are integers. In the matrix multiplication
the ith element of the resulting vector is calculated modulo pei , and thus it
suffices to consider 0 ≤ hij < peµ , where µ = max (i, j). Shoda also showed
that when a finite Abelian group is expressed as the direct product of primary
Abelian groups whose orders are powers of distinct primes, the automorphism
group of the Abelian group is a direct product of the automorphism groups
of the primary Abelian direct factors.

3.2 Equivalent sets

We consider two sets S, T ⊆ G equivalent if T = Sψ where ψ : G 7→ G is
a bijection that preserves the equality of two-element sums. That is, we must
have w + x = y + z iff wψ + xψ = yψ + zψ.
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Letting z = 0 we have w+x = y+0 iff wψ +xψ = zψ +0ψ iff wψ− 0ψ +
xψ − 0ψ = zψ − 0ψ. Letting c = 0ψ and substituting xψ = xφ + c we find
w+x = y iff wφ +xφ = yφ, so φ is an automorphism of G, and ψ must be of
the form ψ : x 7→ xφ+ c, where φ is an automorphism of G and c ∈ G. All ψ
of the form ψ : x 7→ xφ + c preserve the equality of two-element sums; such
ψ form a group, which we denote with H . As 0φ = 0 for all φ ∈ Aut (G) and
Aut (G) ⊆ H , we denote H0 = Aut (G).

3.3 Canonicity test

For the elements of G we use the usual lexicographic order for tuples except
that we choose an element g0 ∈ G of maximum order and let g0 precede all
elements other than 0. The order of the subsets of G is the lexicographical
order: for S, T ⊆ G, S < T iff there exists x ∈ G such that x ∈ S, x /∈ T
and y ∈ S iff y ∈ T for all y < x in G. When H acts on G, the subsets of G
are partitioned into orbits. A subset S ⊆ G is canonical, if it is the minimum
of its orbit: S = minSH .

The simplistic method of testing the canonicity of S by computing Sψ

for every ψ ∈ H would be prohibitively laborious for groups with large |H|.
Therefore we determine a transversal T of the subgroup H0,g0 ⊆ H that fixes
0 and g0 pointwise. For every (g1, g2) where g2−g1 is of maximum order there
is a ψ ∈ T such that (g1, g2)

ψ−1

= (0, g0). In testing S ⊆ G for canonicity,
we determine all pairs (g1, g2) such that g1, g2 ∈ S and g2 − g1 is an element
of maximum order; for each such pair we determine the ψ ∈ T for which
(g1, g2)

ψ−1

= (0, g0) and reject S as not canonical if Sψ
−1

< S. If S ≤ Sψ
−1

for all ψ tried, we accept S as possibly canonical.
For determining T , we first choose a transversal T0 ofH0 ⊂ H . For conve-

nience, we choose T0 to contain the mapping f : x 7→ x+g for every g ∈ G.
We also choose a transversal Tg0 of H0,g0 ⊆ H0, so that for every g ∈ gH0

0

there is a φ ∈ Tg0 for which gφ0 = g. When mappings compose from left to
right, T = Tg0T0 is the desired transversal.

Let us give an informal justification of this limited canonicity testing.
First, we suppose that the vast majority of sets to be tested contain a pair
g1, g2 such that (g1, g2) ∈ (0, g0)

H — the sets that do not are always accepted
as possibly canonical. With that assumption it clearly suffices to consider
only mappings that map a pair to (0, g0), since sets that contain 0 and g0

precede those that do not. To somewhat justify that assumption, note that
Jamison [6] proves that for n < 2310, every sum cover of Zn is equivalent to
one that contains 0 and 1.

If G is cyclic, we have H = T , and our canonicity test will only accept

canonical subsets. It may be shown that in an Abelian group
∣

∣

∣
g

Aut(G)
0

∣

∣

∣
≥

ϕ (|G|), where ϕ denotes the Euler totient function, and equality holds for
cyclic G. Since |T0| = |G|, we have |T | ≥ |G|ϕ (|G|). Since T is at least
as large for an Abelian group as it is for a cyclic group of the same order,
it appears that our canonicity test is of at least comparable efficiency for an
Abelian group as it is for a cyclic group of the same order. It would seem,
however, that our canonicity test leaves much room for improvement partic-
ularly for Abelian groups with several cyclic direct factors whose orders are
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powers of the same prime.

4 AN ORDERLY ALGORITHM

Our search algorithm is a backtrack search with isomorph rejection. It is an
orderly algorithm in the style of Faradžev [1] and Read [9]. Let H be a finite
group that acts on a finite totally ordered set X ; for subsets of X we use the
induced action. The order on X induces a lexicographic order on the set of
all subsets of X : for S, T ⊆ X we have S < T iff there exists x ∈ X such
that x ∈ S, x /∈ T and y ∈ S iff y ∈ T for all y < x in G. A subset S ⊆ X is
said to be canonical, if S ≤ h (S) for all h ∈ H .

Theorem 4 When started on the empty set, the following method visits every
canonical subset of X : Upon visiting a canonical subset S ⊆ X , construct
each of the subsets S ∪ {x} where x ∈ X and s < x for all s ∈ S, and visit
recursively those newly constructed subsets that are canonical.

Proof: Define f (S) = S \ {maxS} for ∅ 6= S ⊆ X . Observe that f is
weakly monotonic on k-subsets: for two k-subsets S, T ⊆ X , S < T implies
f (S) ≤ f (T ). Also, for any h ∈ H , f (h (S)) ≤ h (f (S)), as both may
be obtained from h (S) by removing an element – the maximum element
in case of f (h (S)). As the induction base, all 0-element subsets of X are
visited. As the induction step, if all canonical n-subsets of X are visited, then
all canonical n + 1-subsets of X will also be: let C be a canonical n + 1-
subset of X . As C is canonical, C ≤ h (C) for all h ∈ H . Since f is weakly
monotonic, this implies f (C) ≤ f (h (C)) ≤ h (f (C)) for all h ∈ H . Since
f (C) ≤ h (f (C)) for all h ∈ H , f (C) is also canonical. By the induction
hypothesis, f (C) is visited, and therefore C is also visited.

In our search, X will consist of the elements of the Abelian groupG under
consideration and H will be the group of equivalence mappings of G. As
described in Section 3, our canonicity test may fail to detect that a subset is
not canonical, in which case some equivalent subsets may be visited more
than once in the search.

Our algorithm receives as parameters an integer k and an Abelian group
G. Then, using the isomorph rejection method described above with the
canonicity test detailed in Section 3, it searches for a k-element cover of G.
Since H preserves the distinctness of sums or differences of two elements of
G, we may also prune some branches of the tree by a counting argument.
For constructing a strict sum cover, let p (S) =

(

|S|
2

)

− |ss (S)| represent
the duplication in the partial strict sum cover S 6= ∅. Let S ′ = S ∪ {s}

where s /∈ S. Now p (S ′) =
(

|S′|
2

)

− |ss (S) ∪ {s + t | t ∈ S}| ≥
(

|S|
2

)

+
|S| − |ss (S)| − |S| = p (S). Thus, as duplication can only increase when
elements are added to a partial strict sum cover, and since p (C) =

(

k

2

)

− |G|
for a k-element strict sum cover C of G, the search branches where p (S) >
(

k

2

)

− |G| may be pruned since such an S cannot be a subset of a k-element
strict sum cover of G. The analogous argument may be presented for sum
covers with p (S) =

(

|S|+1
2

)

− |s (S)| and for difference covers with p (S) =
|S| (|S| − 1) − |d (G)|.
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5 RESULTS

We computed the minimum covers with the algorithm described for Abelian
groups of small order. The distributed batch system autoson [8] was used for
performing the computation on a heterogeneous network of PCs. We com-
puted the minimum sum cover of groups with order up to 85, the minimum
strict sum cover up to group order 90 and the minimum difference cover up
to group order 127. We also checked that no 13-element sum cover exists for
groups G with 86 ≤ |G| ≤ 90. These computations allow us to determine
nd (k) and n′

d (k) for k ≤ 12, ns (k) and n′
s (k) for k ≤ 13, and nss (k) and

n′
ss (k) for k ≤ 14. The results are summarized in Table 1, and the corre-

sponding minimum covers are given in Tables 2, 3, and 4. The remaining
minimum covers computed may be obtained by contacting the author or at
<URL:http://www.tcs.hut.fi/~haha/>.

Table 1: Values of nd (k), n′
d (k), ns (k), n′

s (k), nss (k), and n′
ss (k)

k 2 3 4 5 6 7 8 9 10 11 12 13 14
nd (k) 3 7 13 21 31 39 57 73 91 95 133
n′
d (k) 3 7 13 21 31 39 57 73 91 95 133
ns (k) 3 5 9 13 19 21 30 36 43 51 64 72
n′
s (k) 3 5 9 13 19 21 30 35 43 51 63 67

nss (k) 3 6 9 13 20 25 30 36 42 56 64 72
n′
ss (k) 3 6 9 13 17 24 30 36 42 56 61 72

Given a k-element cover S of an Abelian group G, it is straightforward
to verify that it is, indeed, a cover of the required kind. However, it is
generally not straightforward to verify that no k − 1-element cover exists,
or that no k-element cover of a larger group exists. The most natural way
to verify the results would be to check whether an independent implemen-
tation gives the same results. For cyclic groups of order up to 54 we ob-
tain minimum sum and strict sum covers of the same cardinality as Fitch
and Jamison [2] with one exception: we found a smaller strict sum cover
{0, 1, 2, 3, 4, 5, 11, 18, 23, 28, 35} ⊂ Z41. For cyclic groups of order up to 127
we obtain minimum difference covers of the same cardinality as Wiedemann
[12]. The covers themselves cannot be compared due to a different ordering
of the elements of G in the search.
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Table 2: Difference covers that correspond to values of nd(k) and n′
d(k)

k G a minimum difference cover
2 Z3 {0, 1}
3 Z7 {0, 1, 3}
4 Z13 {0, 1, 3, 9}
5 Z21 {0, 1, 6, 8, 18}
6 Z31 {0, 1, 3, 8, 12, 18}
7 Z39 {0, 1, 16, 20, 22, 27, 30}
8 Z57 {0, 1, 9, 11, 14, 35, 39, 51}
9 Z73 {0, 1, 3, 7, 15, 31, 36, 54, 63}

10 Z91 {0, 1, 7, 16, 27, 56, 60, 68, 70, 73}
11 Z95 {0, 1, 5, 8, 18, 20, 29, 31, 45, 61, 67}
12 Z133 {0, 1, 32, 42, 44, 48, 51, 59, 72, 77, 97, 111}

Table 3: Sum covers that correspond to values of ns(k) or n′
s(k)

k |G| G a minimum sum cover
2 3 Z3 {0, 1}
3 5 Z5 {0, 1, 2}
4 9 Z9 {0, 1, 3, 4}
5 13 Z13 {0, 1, 2, 6, 9}
6 19 Z19 {0, 1, 3, 12, 14, 15}
7 21 Z21 {0, 1, 3, 7, 11, 15, 19}
8 30 Z30 {0, 1, 3, 9, 11, 12, 16, 26}
9 35 Z35 {0, 1, 3, 13, 15, 17, 27, 29, 30}
9 36 Z4×Z

2
3 {(0, 0, 0), (1, 0, 1), (0, 0, 1), (0, 0, 2), (1, 1, 0),

(1, 2, 0), (3, 0, 2), (3, 1, 0), (3, 2, 0)}
10 43 Z43 {0, 1, 2, 3, 10, 15, 21, 25, 31, 36}
11 51 Z51 {0, 1, 3, 7, 10, 15, 18, 22, 24, 25, 38}
12 63 Z63 {0, 1, 3, 8, 12, 18, 22, 27, 29, 30, 43, 50}
12 64 Z

2
8 {(0, 0), (0, 1), (0, 4), (1, 0), (1, 2), (2, 1), (2, 2),

(2, 6), (4, 5), (5, 0), (5, 2), (6, 5)}
13 67 Z67 {0, 1, 2, 3, 4, 5, 6, 16, 24, 33, 40, 49, 57}
13 72 Z2×Z4×Z9 {(0, 0, 0), (0, 1, 1), (0, 0, 2), (0, 2, 1), (0, 2, 4),

(0, 2, 7), (0, 3, 1), (1, 0, 3), (1, 0, 8), (1, 1, 1),
(1, 2, 5), (1, 2, 6), (1, 3, 1)}
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Table 4: Strict sum covers that correspond to values of nss(k) or n′
ss(k)

k |G| G a minimum strict sum cover
3 3 Z3 {0, 1, 2}
4 6 Z6 {0, 1, 2, 4}
5 9 Z9 {0, 1, 2, 3, 6}
6 13 Z13 {0, 1, 2, 3, 6, 10}
7 17 Z17 {0, 1, 2, 3, 4, 8, 13}
7 20 Z

2
2×Z5 {(0, 0, 0), (0, 1, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4),

(1, 0, 1), (1, 1, 1)}
8 24 Z24 {0, 1, 2, 4, 8, 13, 18, 22}
8 25 Z

2
5 {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (2, 1), (3, 2),

(4, 3)}
9 30 Z30 {0, 1, 2, 6, 9, 12, 16, 17, 18}

10 36 Z36 {0, 1, 4, 5, 7, 13, 18, 23, 28, 34}
11 42 Z42 {0, 1, 11, 12, 18, 22, 24, 27, 30, 32, 36}
12 56 Z56 {0, 1, 12, 15, 22, 29, 32, 43, 44, 48, 50, 52}
13 61 Z61 {0, 1, 2, 3, 4, 7, 13, 21, 29, 36, 44, 52, 58}
13 64 Z4×Z16 {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 7), (0, 13),

(1, 0), (1, 8), (2, 2), (2, 10), (3, 4), (3, 12)}
14 72 Z72 {0, 1, 2, 5, 12, 30, 37, 40, 41, 42, 50, 56, 58, 64}
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