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On Line Spectral Frequencies

W. Bastiaan Kleijn Fellow, IEEE Tom Backstrém, and Paavo Alku

Abstract—The commonly used line spectral frequencies of interlaced roots of the symmetric and antisymmetric poly-
form the roots of symmetric and antisymmetric polynomials nomials will generally start (at the low-frequency end) with
constructed from a linear predictor. In this letter, we provide a root of the symmetric polynomial. The new interpretation

a new, simpler proof that the symmetric and antisymmetric Iso h int ting link fo fast tati | thods f
polynomials can be regarded as optimal constrained predictors aiso has an interesting link 1o fast computational methods tor

that correspond to predicting from the low-pass and high-pass Predictors that exploit symmetric polynomials [9]. We note that
filtered signal, respectively. the constrained predictors are similar to those discussed in [10]

Index Terms—Linear prediction, line spectral frequency, line @nd [11]. The present proof is different and more compact than
spectral pair. that in [12].

We continue this letter in Section Il with the decomposition of
the conventional linear prediction polynomial into a symmetric
and an antisymmetric LSF polynomial. In Section Ill, we show

INEAR prediction is ubiquitous in speech coding (e.glhat the same symmetric and antisymmetric polynomials are ob-
[1]). In linear-prediction-based speech coders, the preained for certain constrained predictors. We discuss the signif-
dictor is generally encoded as side-information and interpolatigé@nce of these results in Section V.
between updates. It has been found that the line spectral freWe will, where that does not lead to confusion, refer to the
guency (LSF) [2] representation of the predictor is particularigrediction-residual filter as “the predictor.” The notatiaff)
well suited for quantization (e.g., [3]) and interpolation (e.gindicates a vector of dimensidnandA*)(z) is thez transform
[3], [4]). From a theoretical viewpoint, this can be motivate@f the corresponding sequence. Subscriptnd_ denote, re-
by the fact that the sensitivity matrix relating the LSF-domaispectively, symmetry and antisymmetry of a vector or sequence.
squared quantization error to the perceptually relevant I&yperscripts” and~ indicate low-pass and high-pass filtering
spectrum is diagonal [5], [6]. Furthermore, the minimum-phastyy H*(z) = 1+ z~' andH~(z) = —1 + 2™, respectively.
property of the quantized predictor is easily guaranteed [7].

Despite the extensive use of the LSFs, insight in their be- II. CONVENTIONAL LINEAR PREDICTION
hgvior and meanipg is less developed than. tha'F of other P et us consider a stationary signal withkax k covari-
dictor representations, although some physical interpretatial}s-e matrix R(*). The optimal ordep linear predictor

hz\é(.at.beeln prgvidfd [d7'], [8]%:[I'hheLgSo§I %fthiﬁ’ Iet'ter it‘;t? &VOV“’%@?’“), ey —a,(,p“)]T for this signal can be determined
addifiona’ Uinderstanding ot the s Dy showing that ey ¢y, the extended normal equations

be determined from particular optimal constrained predictors.

I. INTRODUCTION

We show that, for even predictor order, the LSFs can be RE+D 0+ [02 0 O}T 1)
. . . - (p)7 ’
interpreted as the roots of two particular predictor polyno-
mials. These polynomials (and corresponding predictors) HRere aP+d) — 1, a§p+1)7 o a]()p+1)]T, and o2 . is the

symmetric, which is consistent with the LSFs being on the

unit circle. The predictors are optimal constrained predictopsrediction-residual variance. The elements of the vesfor
} orrespond to the coefficients of théh-order prediction-error

that correspond to prediction of the original signal from . .
b P 9 g ﬁ]ter, often referred to as the inverse filter.

particular high-pass and a particular low-pass filtered signal, . . . i
respectively. The predictor polynomials are identical to the LSF A conceptually simple method for solving (1) is to solve first

polynomials of the unconstrained predictor (the symmetric RE+HD 5@+ — [1,0,..., o]T 2
and antisymmetric components of the unconstrained predictor (p+1)
polynomial), if the trivial roots of these LSF polynomials afor a?+l). We then haVGU?p) = 1/a, and a®**t) =

+1 and—1 are removed. This basic equivalence is outlined ir? \a®+1).

Fig. 1. The nature of the constraints indicates that the sequencBlext, we define the symmetric polynomial and the antisym-
metric polynomial of the LSF decomposition using a vector
notation. Let the superscrifitdenote the sequence-reversal op-
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. root finder >
signal LP analysis > decomposition LSF
L root finder >
signal high-pass constrained LP analysis e root finder >
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Fig. 1. Block diagram outlining the equivalence shown in this letter for even predictor order. The top diagram shows the conventional methodnfgr obtai

the LSFs based on a decomposition of the predictor polynomial into symmetric and antisymmetric polynomials. The bottom diagram shows a method based o
prediction from particular high-pass and low-pass filtered signals that renders the symmetric and antisymmetric polynomials as predictiai(tymming

the trivial roots).

The polynomialsﬁﬁﬁ’”)(z) and A%*?(2) are the symmetric the constrained predictogé?+1)+ and&®+1)~ have the orig-
and antisymmetric polynomials, respectively, of the LSF dénal signal samples as input: definiagf 9+ = H*Tbr+1+
composition (usually denoted #z) andQ(z), respectively), (note that, in generah(()p“) is not unity), the prediction error
except for the scaling fact@r(zp). Given the (anti)symmetry, it can be written as

is easy to see from (2) that” > anda”** obey i=p
_ (p+1)+ :
e(n) = Z ¢ z(n —1). (8)
REH2aP — 1, 0, ..., 0, 44" 4) P

By multiplying (6) by the inverse oH* (the right-hand side
can be found with simple forward elimination), it is seen that
the predictorg®+D+ = HETbP+D+ gatisfy

wherey is a constant.

I1l. CONSTRAINED LINEAR PREDICTION

We define a predictor{—p+tDF . —p@PTHHT that REHDEHDE — 11 71,1, 51, .. 7. C)
predicts a signal sample of a first signal), from a set of _ _ o
samplesc(n), ..., 2+ (n — p + 1) of a second signal that is The_ same equation can be obtamed by minimization of the pre-
obtained by low-pass filtering(n) with H+(z) = 1+ 271, diction error subject to a constraint on the structure(®f )+,

i.e., XT(z) = Ht(2)X(z). The prediction error is The predicto» ™)+ is symmetrio(c(* 1)+ = e+ +#) for
p even sinceR®+1) s Toeplitz and symmetric and since the
right-hand side of (9) is symmetric. Furthermo@é?t1+ s

i=p
e(n) = a(n)+ > 0PV ot (n —i+1). (5) antisymmetric for odd, since the right-hand side of (9) is an-
im1 tisymmetric. Similarly,é»*"~ must be symmetric fop odd

and even. The symmetries and antisymmetries can be exploited
Similarly, we define a predictoi—bﬁ” to reduce computational effort.
that predictsc(n) from samples of the signal=(n) obtained Defining a (p + 2)-dimensional symmetric component

+1)_. o —b1(,1)+1)_]T

by high-pass filtering with// ~(z) = —1 + z~!. The extended 5$’+2)+ of the vector&®*+D+ and a(p + 2)-dimensional
normal equations defining these predictors are antisymmetric componerﬁ<_”+2)_ of ¢V~ as in (3), it

HER P+ AT 0+ )% — o ..o ©) follows from (9) that, forp even

3 3 REDEPTIE = [y% 0 ... 0, +4%]" (10)

whereb®+)+ and b+~ are the unnormalized prediction o

error filters and the matricdd™ andH ™~ are the(p+1)x(p+1) whereyt and~y~ are constants. (We recall that superscripts

Toeplitz matrices and ~ indicate low-pass and high-pass filtering, whereas sub-
scripts;. and_ indicate symmetry and antisymmetry.) We rec-

H,i] = 0;,; £ 0i—1,, i,7 €10, ..., p}. (7) ognize that (10) and (4) are identical and that, therefore, for even

p

The matricest ; correspond to a transform where the first N

row yields the original sample(n) to be predicted, and the cp)x _ 0 S (p42) (11)

following rows yield samples of* (n) filtered by H*(z). * *

We define the constrained predictorg®tb)+ =

HtTpP+tD+ gnd eetH- = H-Tpe+D- that corre- Thisimplies that()ﬁf”)i(z) andAgﬁ’”)(z) (the z transforms
spond to the optimal prediction of the unfiltered signal frongorresponding td:gﬁ’“)i andég’”)) are identical except for

respectively, high-pass and low-pass filtered samples. Note ttair scaling.
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Next, let us consider odd values pf In this case, we have generally retains a high-pass character. Whenodd, which is
crtD)E = Fe+D)E# The antisymmetric component ofless relevant in practice, we find similarly that?*? (z)/(1 +

¢(tD+ js obtained by subtraction

2~1) equalsC®*+D+(z) (except for a scaling), but no equiva-
lent result forA?*?)(z) exists.

A structure similar to the one given in (4) is used in
the Levinson recursive computation of the predictor. In the
Levinson algorithm, the forward and backward predictors of

(3) are multiplied by factors so as to render the right-hand side

clp+1)+ 0
~(p+2)+ _ | C _
<= { 0 } |:6(P+1)+#:| ' (12)
For p odd we then obtain
o2+ _ 7 g, (13)
7

of (4) of the form[1, 0, 0, ...]7 [13]. Moreover, the symmetric
version of (9) has appeared earlier in the context of a split

) _ ) Levinson—Durbin recursion [9]. This algorithm takes advantage
However, forp odd there is no equation equivalent to (11) fopf poth the symmetry and recursion propertiess6ft D+ to

the symmetric case (i.e., faf”*>).

lower the computational requirements for finding an optimal

We now summarize our results. For apyand with proper predictor (its numerical properties make it less attractive [14]).

scaling, the antisymmetric components of the conventional and
constrained predictors are equal. Furthermore, for even values
of p and with proper scaling, the symmetric component of the
conventional and constrained predictors are also equal. Som#!

implications of these results are discussed in Section IV.
[2]
IV. DISCUSSION 3]

We saw that, fop even, the constrained predicto D+

has the samg + 2)-dimensional symmetric component as the [4]
unconstrained predictai?+1), ignoring a scaling. Similarly,
again forp even, the constrained predictg? )~ has the same

. : : : (5]
(p + 2)-dimensional antisymmetric component as the uncon-

strained predictoa®t1), except for a scaling. It then follows [6]
that

r* alPt?) — 2+ ¢l + 0 (14) .

p ot F - 0 RIVEROES

[8l

since bothc**1)+ andcP+1)~ are symmetric. This results in
AP (2) = (1227 1)CETDE() (u/4%), rendering the well- (9]
known fact thatASf”)(z) has a trivial rootat = —1and that |,

A(f+2)(z) has a trivial root at = +1.
Let us restate these findings. We have found that the sy i1
metric ponnomiaIASf’J’z)(z)/(1+z*1) is the optimal predictor
C®P+D+(2) that is constrained to predict from the low-pass fil-
tered signal (except for a scaling). This predictor generally relt?
tains a low-pass character. Furthermore, we have found that the
symmetric polynomiald?*? (z)/(=1 + z~1) is the optimal  [13]
predictor C**1)=(z) that is constrained to predict from the 4
high-pass filtered signal (except for a scaling). This predictor
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