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All-Pole Modeling Technique Based on Weighted
Sum of LSP Polynomials

Tom Bäckström, Member, IEEE,and Paavo Alku

Abstract—This study presents a new technique called
weighted-sum line spectrum pair (WLSP) where an all-pole filter
is defined by using a sum of weighted line spectrum pair poly-
nomials. WLSP yields a stable all-pole filter of order , whose
autocorrelation function coincides with that of the input signal
between indices 0 and 1. By sacrificing the exact matching
at index , WLSP models the autocorrelation of the input
signal at the indices above more accurately than conventional
linear prediction (LP). Experiments with vowels show that, in
comparison to the conventional LP, WLSP yields all-pole spectra
that model formants with an increased dynamic range between
formant peaks and spectral valleys.

Index Terms—All-pole modeling, line spectrum pair, linear
prediction.

I. INTRODUCTION

L INEAR PREDICTION (LP) is among the most widely
used methods of speech processing. It has an established

role, epecially in speech compression, and it is used in various
low bit rate speech coders, e.g., [1]. Even though different vari-
ations of LP have been developed, the most widely used is the
autocorrelation method of linear prediction. In this method, an
optimal predictor (a finite-impulse response of order) is de-
termined by minimizing the square of the prediction error, the
residual, over an infinite time interval [2].

The popularity of the conventional autocorrelation method
of LP is based largely on the fact that it yields a stable all-pole
model for the speech spectrum, which is accurate enough for
most applications when presented by few parameters. The
ability of LP to model the speech spectrum is explained by the
autocorrelation function of the all-pole filter, which matches
exactly the autocorrelation of the input signal between indices
0 and , when the prediction order equals [3]. It should
be noted, however, that in determining the conventional LP
predictor of order , no information is used from the autocor-
relation function of the input signal beyond the time index.

The line spectrum pair (LSP) decomposition is one of the
methods developed for presenting the LP information [4]. In
this technique, the predictor computed by linear prediction is
split into a symmetric and an antisymmetric polynomial. It has
been proved that the roots of these two polynomials, the LSPs,
are located on the unit circle and interlaced, if the original LP
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predictor is minimum phase [5]. Furthermore, it has been shown
that LSPs behave well when interpolated [6]. Due to these prop-
erties, the LSP decomposition is widely used currently in quan-
tization of LP information, e.g., [1].

In this study, we present a new linear predictive algorithm
called weighted-sum line spectrum pair (WLSP), which yields
an all-pole filter of order to model the speech spectrum. In
contrast to the conventional autocorrelation method of LP, the
proposed algorithm also takes advantage of the autocorrelation
of the input signal beyond time index in order to obtain a
more accurate all-pole model for the speech spectrum. WLSP
exploits the LSP decomposition in a manner different from that
typically used in speech coding; the LSP decomposition is not
computed in order to quantize the LP information but rather as
a computational tool, which defines stable all-pole filters with
the proposed autocorrelation matching property.

II. BACKGROUND

The conventional LP predictor of order for a signal
as given by [2] is

(1)

The coefficient vector , where , can
be solved from the normal equations .
The autocorrelation matrix is defined as the expected value of
correlation , i.e., , where signal is assumed
to be wide-sense stationary and the residual energy is

.
The symmetric and antisymmetric LSP polynomials

are defined as and
, respectively [5]. By

defining a zero-extended vector (where is the
LP coefficient vector), the LSP polynomials can be defined
equivalently in matrix form as

and (2)

where subscript denotes reversal of rows.

III. M ETHODS

A. Weighted Sum of the LSP Polynomials

The proposed method is based on predictor polynomial
defined as

(3)
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i.e., is a weighted sum, with weighting parameter,
of the LSP polynomials and in the polynomial
space. It is worth noting that with (3) becomes

. This is the equation
according to which the LP predictor is reconstructed from the
LSP polynomials [5].

Mathematical properties of are described in this
section by focusing on three issues: the energy of the residual,
autocorrelation of and root tracks of .

B. Residual of

For the zero extended LP coefficient vectorwe have
, where . The sym-

metric LSP polynomial thus yields

... (4)

and the antisymmetric LSP polynomial yields similarly

(5)

Polynomial can be written in vector form as
and we obtain

... (6)

From this equation, we can write the following expression for
the residual energy:

(7)

Vector corresponds to the LP predictor of order , if
is chosen such that the last row of right hand side vector in (6)

becomes equal to zero, i.e., . This is, in fact,
one iteration step of the Levinson–Durbin recursion [7], which
we will call the Levinson–Durbin solution.

Incrementing the predictor order in LP decreases the energy
of the residual. Thus, the residual energy for the model order

should be greater than or equal to the residual energy for the
model order [(7)], i.e.,

. Substituting the Levinson–Durbin solution foryields
, which holds true when is chosen such that

. That is, if is chosen within these
limits, the residual energy given by (of order )
is smaller than the residual energy given by the LP predictor of
order .

C. Autocorrelation of

Given the autocorrelation of an input
signal, each possible value of (possible values are such
that matrix is invertible) has a corresponding value of. That

Fig. 1. Root tracks ofD(z; �) as a function of� 2 , an example with
m = 10. Small circles inside the unit circle correspond to the roots of the
LP polynomialA (z)(� = 1=2), and small circles outside the unit circle
correspond to their mirror image partners (i.e., roots ofA (z ), � = �1).
The LSP polynomials roots are at the intersections of the unit circle and the
D(z;�) root tracks (� = 0 or � = 1).

is, if is chosen according to the Levinson–Durbin recursion
and is calculated with a given value of , then
is the LP predictor of order and all autocorrelation values
will be exactly fitted up to . If a different value is chosen
for , the model then matches some other autocorrelation,

, where for . In other
words, always matches autocorrelations of the input
signal in range .

D. Root Tracks of

Polynomial is a linear combination, and thus a con-
tinuous transformation in the orthogonal space spanned by
and . We can readily prove that the roots of polynomial

follow continuous tracks in the Z-plane as functions of
. An example with of the polynomial root space of

as a function of is shown in Fig. 1.
Apart from being continuous, the root tracks of are

also closed paths, i.e., their ending points at coin-
cide. In fact, when goes to infinity (either positive or neg-
ative), then roots of will become roots of
(i.e., the mirror image partners of the roots of ), i.e.,

.
Since the zeros of the LSP polynomials and are

interlaced on the unit circle, their sum
will be minimum-phase [5]. Scaling of and

with positive coefficients does not alter their zeros and, con-
sequently, polynomial will also be minimum-phase in
the open interval . Furthermore, setting
yields the original LP polynomial of order and

yields the LP polynomial of
order .

IV. A LGORITHM

The weighted sum of the LSP polynomials (3), together with
the autocorrelation properties of (described in Sec-
tion III-C), serves as a basis for the proposed WLSP filters.
Given an input signal , defining a stable WLSP all-pole
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filter of order comprises the following stages. (The time index
of the autocorrelation function is denoted by.)

1) Calculate LP polynomial for using
conventional linear prediction with the autocorrelation
criterion. Notice that LP analysis of order yields LSP
polynomials of order [5]. Therefore, in order to
generate an th order WLSP filter, the orders of
and in (3) have to be equal to , which corresponds
to defining an LP predictor of order .

2) Construct the LSP polynomials and from
as defined in [5].

3) Define, using (3), an all-pole filter of order
with an additional parameter. Optimize the all-pole

filter by searching for the value of that minimizes the
absolute error between the (normalized) autocorrelations
of and for . Notice from
Section III-C that autocorrelations of and
are equal for , when the order of
equals .

Note that in Step 3), parameterhas to be in the open interval
to guarantee stability. Further, in our current exper-

iments, parameter was optimized iteratively with a straight-
forward brute-force approach. Refinement of the optimization
technique is left for further studies.

V. RESULTS

The proposed all-pole modeling technique was compared
to conventional LP analysis by analyzing the spectra of seven
Finnish vowels. The speech sounds were produced by six
speakers (two female, four male). The two linear predictive
analyses were computed by using a predictor order ,
a 20-ms Hamming window, autocorrelation window of length

(samples) and a sampling frequency of 8 kHz.
The comparison of the behaviors of LP and WLSP in mod-

eling of formants was done by using the following procedure.
Given an all-pole spectrum (in decibels), the formant peak was
defined as a local maximum of the spectrum. The spectral valley
was then defined as a local minimum of the spectrum following
this peak. The level difference of these two spectral components,
denoted by , was computed to characterize the dynamics of
the all-pole spectrum in the vicinity of the corresponding for-
mant. Finally, the given by LP was subtracted from the

yielded by WLSP for all the formants extracted. This dif-
ference is positive when WLSP
models the formant with larger dynamics than LP. The value
of is shown in Fig. 2 averaged over all extracted formants
and all subjects. It should be noted that is positive for all
vowels. Fig. 3 shows the fast Fourier transform spectrum of a
male vowel /a/ together with the all-pole spectra given by LP
and WLSP.

To be able to compute all-pole models of speech with
increased spectral dynamics between formant peaks and
valleys (i.e., increasing ) is beneficial, for example, in
speech coding. Namely, using all-pole filters with large spectral
dynamics results in improved quality of the decoded speech,
because the noise level that originates from quantization of the
residual is attenuated in formant valleys.

Fig. 2. Level difference(L ) was computed between a formant peak and
the following spectral valley. Difference of this measure computed for LP and
WLSP(�L = L � L ) withm = 10 andL = 20 is shown
for seven Finnish vowels.

Fig. 3. Fast Fourier transform spectrum of a male vowel /a/ together with
all-pole spectra(m = 10) of LP (thin line) and WLSP (L = 20, thick line).

The two all-pole modeling techniques were also compared in
terms of the normalized residual energies, i.e., the energy of the
residual divided by the energy of the input signal. The results
showed that the conventional LP analysis yielded, on average,
0.17 dB smaller values of the normalized residual energy av-
eraged over all subjects and vowels. This degradation of per-
formance of WLSP compared to the conventional LP analysis
in terms of the normalized residual energy is explained by the
fact (see Section III-C) that the autocorrelation function of the
all-pole filter given by the conventional LP matches precisely
the th autocorrelation term of the input signal, while this is
not achieved by WLSP.

VI. CONCLUSION

In this letter, we have presented a new all-pole modeling tech-
nique called weighted-sum line spectrum pair (WLSP), based on
the weighted sum of the LSP polynomials. With this technique,
we define an all-pole filter of order , whose autocorrelation ex-
actly matches the first autocorrelation values of the input
signal, but the exact match at indexis sacrificed in order to
achieve improved matching in the upper autocorrelation range.
A mathematical treatise demonstrates that the proposed method
is well behaved, and stability of the all-pole filter is guaranteed.
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Experiments show that WLSP yields, in comparison to conven-
tional LP, spectral models with larger level differences between
formant peaks and spectral valleys. Consequently, the presented
methods could be applied in coding and enhancement of speech,
by suppressing quantization noise in spectral valleys.
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