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Linear Predictive Method for Improved Spectral
Modeling of Lower Frequencies of Speech with

Small Prediction Orders
Paavo Alku and Tom B̈ackstr̈om

Abstract— An all-pole modeling technique, Linear Pre-
diction with Low-frequency Emphasis (LPLE), which em-
phasizes the lower frequency range of the input signal,
is presented. The method is based on first interpreting
conventional linear predictive (LP) analyses of successive
prediction orders with parallel structures using the concept
of symmetric linear prediction. In these implementations,
symmetric linear prediction is preceded by simple pre-
filters, which are of either low or high frequency char-
acteristics. Combining those symmetric linear predictors
that are not preceded by high-frequency pre-filters yields
the proposed LPLE predictor. It is proved that the all-pole
filters computed by LPLE are always stable. The results
achieved with vowels show that the proposed method is
well-suited for those applications, where low-order all-pole
models with improved modeling of the lowest formants, are
needed.

Index Terms— all-pole modeling, linear prediction, LSP
decomposition

I. I NTRODUCTION

Linear prediction (LP) is among the most widely
used methods of speech processing. Especially in low
bit rate speech coding, LP has an established role and
many of the standardized coders are based on linear
prediction [1], [2], [3]. Among the different variations
of LP, the classical autocorrelation method of linear
prediction is the most popular. In this method, a predictor
(an FIR of orderm) is determined by minimizing the
square of the prediction error, i.e. the residual, over a
time interval, which is, in principle, infinite [4]. The
prevalence of the conventional autocorrelation method of
LP is explained by the fact that it yields stable all-pole
models for speech spectra, which are accurate enough
for most applications when defined by a few parameters.
Moreover, computation of the filter parameters can be
done by applying fast algorithms such as the Levinson-
Durbin method [4].
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In order to model the envelope of speech spectrum ac-
curately enough with LP, the prediction order is typically
adjusted to equal the sampling frequency in kHz added
by a small integer [5]. This choice of the prediction
order makes it possible to compute all-pole filters that are
capable to model, on average, one formant per kilohertz
plus the overall spectral structure of speech caused by
the glottal excitation and the lip-radiation effect. Hence,
application of LP in coding of telephone band speech
(i.e., bandwidth between 300 Hz and 3400 Hz, sampling
frequency 8 kHz), for example, is typically based on the
prediction orderm = 10 e.g., [2], [3]. If one attempts to
compress the LP information by using prediction orders
smaller than those given by the rule mentioned above,
the formant structure of speech becomes typically poorly
modeled. This effect is demonstrated in Fig. 1, which
shows an LP spectrum computed for a vowel (vowel /u/,
sampling frequency 8000 kHz) using a prediction order
m = 8, which is slightly too small. The figure illustrates,
how the all-pole spectrum given by the conventional
LP analysis does not separate properly the lowest two
formants.

Since the criterion of optimization in the conventional
LP analysis is the minimization of the residual energy,
all the frequencies of the input signal are treated equally.
In other words, the all-pole model computed by the
conventional LP favors high-energy regions of signal
spectrum no matter at which frequencies these occur.
This equal treatment of the frequencies of the input
signal is inconsistent with, for example, the properties of
human hearing, which is known to be frequency depen-
dent (i.e, the spectral resolution decreases towards higher
frequencies) [6]. Therefore, linear predictive methods
have been developed that utilize the frequency selectivity
of human hearing [7], [8] [9] [10]. The equal treating of
the input frequencies embedded in the conventional LP
analysis is also inconsistent from the point of view of
speech production, because the most important formants,
the first (F1) and second (F2) formant, are typically
located at frequencies below 2 kHz. Hence, from the
point of view of both speech production and perception,
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ILLUSTRATION OF THE FAILURE OF CONVENTIONALLP IN

MODELING OF THE FIRST AND SECOND FORMANT(DENOTED BY

F1 AND F2, RESPECTIVELY), WHEN THE PREDICTION ORDER

(m = 8) IS SLIGHTLY TOO SMALL (THE SAMPLING FREQUENCY

WAS 8KHZ). THE FFT SPECTRUM OF THE SIGNAL(VOWEL /U/) IS

DEPICTED BY THIN LINE AND THE ALL -POLE SPECTRUM GIVEN

BY CONVENTIONAL LP IS DEPICTED BY THICK LINE.

it would be desirable to obtain all-pole models of speech
with improved resolution on the frequency range where
the two lowest formants are located rather than modeling
high-energy regions over the entire frequency range of
the input signal.

The rationale for the present study is to modify the
conventional LP analysis in order to improve modeling
of the main spectral features of speech at low frequencies
with small prediction orders. We will present a new
linear predictive method, Linear Prediction with Low-
frequency Emphasis (LPLE), which gives stable all-pole
models, which, in turn, put more emphasis on the lowest
frequencies of the input signal. As background for the
proposed method, we will first present in Section II,
how conventional LP analysis can be interpreted with the
help of the Line Spectrum Pair (LSP) decomposition and
symmetric linear prediction [11], [12], [13]. Using this
interpretation, it is then possible to combine symmetric
polynomials embedded in conventional LP analyses of
successive prediction orders to define the proposed all-
pole filters. The stability of the filters given by LPLE
can be easily proved as shown at the end of Section III.
Finally, the performance of the new method is compared
to that of conventional LP by analysing the vowels of the
Finnish language.

II. BACKGROUND

In this section, we will briefly present three issues,
which form the basis of the proposed new algorithm:
conventional linear prediction, the Line Spectral Pairs
decomposition, and symmetric linear prediction.

A. Conventional linear prediction

Conventional linear prediction with the prediction
order equal tom can be presented in matrix nota-
tion as follows [4]. Given the signalx(n) and the
predictor parametersai (0 ≤ i ≤ m), denoted by
x = [x(n) . . . x(n − m)]T and a = [a0 . . . am]T in
vector notation, respectively, we can express the residual
as e(n) = xTa. The optimal predictor is defined by
minimizing the expected value of the residual energy
E[e2(n)] = E[aTxxTa] = aTRa subject to the con-
straint a0 = 1 or equivalentlyaTb = 1, whereb =
[1 0 . . . 0]T . The optimal solution can be written in the
form of extended normal equations as:

Ra = σ2b (1)

whereσ2 denotes the energy of the residual.
In the following section, we will denote the transfer

function of the optimal predictor given by conventional
LP (the Z-transform of sequencea defined in Eq. 1) by
A(z).

B. Line Spectral Pair (LSP) decomposition

Given an LP predictorA(z) with a prediction order
equal tom, the Line Spectral Pair (LSP) decomposition
defines two polynomials of orderm + 1, the symmetric
polynomial P (z) and the anti-symmetric polynomial
Q(z), as follows [11]:

P (z)
Q(z)

=
=

A(z) + z−m−1A(z−1)
A(z)− z−m−1A(z−1). (2)

It has been proved that the LSP-decomposition has the
following essential properties [11], [14], [15], [16]:

1) The zeros ofP (z) andQ(z) are always on the unit
circle.

2) Whenm is even,P (z) has a trivial root located
at z = −1 and Q(z) has a trivial root located at
z = 1. Whenm is odd,Q(z) has two trivial roots,
z = 1 andz = −1, while P (z) has no trivial roots.

3) WhenA(z) is minimum-phase, zeros ofP (z) and
Q(z) are interlaced. This property is called the
intramodel interlacing theorem.

4) The roots ofP (z) computed from an LP-predictor
of order m are interlaced with the roots ofP (z)
computed from an LP-predictor of orderm − 1.
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Similarly, roots of Q(z) computed from am’th
order LP-predictor interlace with those defined
from an LP-predictor of orderm−1. This property
is called the intermodel interlacing theorem.

PredictorA(z) can be obtained from the LSP polyno-
mials simply as:

A(z) =
1
2

[P (z) + Q(z)] . (3)

The LSP decomposition is a widely used method to
represent LP parameters in speech coding because it
is well suited for quantization [17] and interpolation
[18]. The intramodel interlacing theorem is especially
highly appreciated in speech coding applications because
it can be used to guarantee that the all-pole computed
by LP is stable after quantization. Even though the most
important application area of the LSP decomposition is
undoubtedly in speech coding, the method has also been
used, for example, in speech recognition [19], [20] and
in speaker recognition [21].

C. Symmetric linear prediction

Symmetric linear prediction [12], [13] with prediction
order equal top is based on the predictor polynomial
defined as:

B(z) = 1 + b1z
−1 + . . . + b p

2
−1z

− p

2
+1 + b p

2
z−

p

2 (4)

+ b p

2
−1z

− p

2
−1 + . . . + b1z

−p+1 + z−p.

In this structure, a predictor of orderp can be defined
from p/2 coefficients bi (1 ≤ i ≤ p/2) because of
the symmetry of the impulse response. Using a similar
optimization procedure as in the case of conventional LP,
it can be shown that the optimal predictor for symmetric
linear prediction is obtained from the following normal
equations:

p

2
−1∑

k=1

bk [R(k − j) + R(k − p + j)] + b p

2
R(j − p

2
)

= −R(j)−R(j − p), j ∈
[
1,

p

2

]
, (5)

where autocorrelation is estimated from samples of sig-
nal x(n), 0 ≤ n ≤ L−1, asR(i) =

∑L−i−1
n=0 x(n)x(n+

i).
It has been established that roots ofB(z) are always

on the unit circle [12]. Essentially, there is a close
connection (although perhaps not well known in the
speech coding community) between symmetric LP and
the LSP decomposition: the LSP polynomials (excepting
the pointsz = ±1) are, in fact, LP predictors, which
minimize the energy of the prediction error subject to the

constraint that the zeros of the predictor are restricted
to the unit circle, i.e., the residual is computed using
symmetric linear prediction [13].

Using the relationship between the LSP decomposition
and the symmetric linear prediction, we can now express
different implementations for the conventional linear
prediction as shown in the flow graphs in Fig. 2. The
figure depicts different alternatives for the implementa-
tion of the conventional linear prediction regardless of
whether the prediction order is even or odd. Normally,
conventional linear prediction is computed by inverse
filtering x(n) using the optimal predictorA(z) defined
in Eq. 1 (Fig. 2(a)). With the LSP decomposition (Eq. 3),
however, it is possible to implement the same filtering
using the parallel structure shown in Fig. 2(b). This
implementation requires more computations than the
basic alternative shown in Fig. 2(a) and is therefore
useless as such. However, it serves as an intermediate
step to the implementations shown in Fig. 2(c) and 2(d),
where conventional linear prediction is also implemented
as a parallel structure. In this alternative, the trivial roots
of the LSP polynomials have been separated and, conse-
quently, bothP (z) andQ(z) can be expressed according
to [13] with the help of symmetric LP predictors. For
even values of the prediction order (see Section II-B),
there is a single trivial root to be separated from both
P (z) and Q(z) (Fig. 2(c)). For odd values ofm, there
are two trivial roots to be separated only fromQ(z) (Fig.
2(d)). Hence, the transfer function of the conventional LP
predictor computed by the structure shown in Fig. 2(c)
can be expressed using the symmetric linear prediction
for even values of the prediction order as follows:

A(z) = 1/2 [B1,e(z)P1(z) + B2,e(z)P2(z)] , (6)

where B1,e(z) and B2,e(z) are transfer functions of
the symmetric linear predictors (both of the orderm)
computed fromx(n) filtered through pre-filtersP1(z) =
1 + z−1 and P2(z) = 1 − z−1, respectively. For odd
values ofm, the transfer function of the conventional
LP analysis can be expressed as:

A(z) = 1/2 [B1,o(z) + B2,o(z)P1(z)P2(z)] , (7)

whereB1,o(z) is the symmetric linear predictor (of order
m + 1) computed directly fromx(n) andB2,o(z) is the
symmetric linear predictor (of orderm − 1) computed
from x(n) filtered through a cascade of filtersP1(z) =
1 + z−1 andP2(z) = 1− z−1.

Implementation of conventional LP using the structure
shown in Fig. 2(c) and 2(d) is, again, inferior to the one
shown in Fig. 2(a) in terms of the computational load.
However, this interpretation of conventional LP serves as
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a starting point for the new all-pole modeling technique
described next in Section III-A.

III. M ETHOD

A. LPLE Algorithm

Similarly to the example shown in Fig. 1, assume
that a given vowel sound sampled with 8 kHz and
conventional LP analysis of an even prediction order
is to be computed. (It is germane to consider only
even values ofm since modeling one spectral resonance
requires at least one complex conjugate pair of poles.
Hence, modeling a maximum number of formants with
an all-pole filter of orderm calls for using an even
prediction order. Consequently, a vast majority of LP
applications use an even value of the prediction order.)
Assume also that the prediction order is smaller than
that required by the sampling frequency (e.g.,m = 8).
According to the flow graph shown in Fig. 2(c), this
conventional LP predictor corresponds to defining two
symmetric linear predictors, both of which are defined
by filtering the input signal through a simple, fixed pre-
filter. It is worth noticing in this implementation that the
zeros ofP1(z) and P2(z) are located atz = −1 and
z = +1, respectively, which implies that the amplitude
response of these two pre-filters at the low and the high
end of the frequency range is considerably different (Fig.
3). Therefore, in determining the LP predictor according
to Fig. 2(c), the symmetric linear predictor in the upper
branch will most likely not locate any of its roots at the
high end of the frequency band due to extensive damping
of these frequencies byP1(z). (Recall that symmetric LP
is based on the mean square error criterion, which means
that it focuses on the strongest spectral components.)
Similarly, roots of B2,e(z) are not likely to occur at
the lowest part of the frequency range due to extensive
attenuation of these frequencies byP2(z). If there is a
great distance between a root ofB1,e(z) (on the unit
circle) and its counterpart ofB2,e(z) (also on the unit
circle), the corresponding root of the final LP predictor
(located inside the unit circle) will be at a distance from
the unit circle. (This follows from properties between
LSP roots and LP, e.g. [20]). Hence, the spectral model
given by LP will most likely not show a strong resonance
in the frequency range in question. This phenomenon
is most severe when the prediction order is too small
as compared to the bandwidth of the input signal and
it therefore explains the poor modeling of the lowest
formants in Fig. 1 as well.

In order to obtain an all-pole filter, which puts more
emphasis on the lower frequency range of the input
signal, it is possible to combine the structures shown

Fig. 2

DIFFERENT IMPLEMENTATIONS OF CONVENTIONAL LINEAR

PREDICTION WITH PREDICTION ORDERm. (A) CONVENTIONAL

IMPLEMENTATION WITH PREDICTORA(z) (EQ. 1).

(B) IMPLEMENTATION BASED ON THELSP DECOMPOSITION(EQ.

3). (C) IMPLEMENTATION WITH SYMMETRIC LP (BASED ON

[12]), m EVEN. SYMMETRIC LINEAR PREDICTORSB1,e(z) AND

B2,e(z) ARE OPTIMIZED USINGEQ. 5 WITH p = m.

AUTOCORRELATIONS REQUIRED IN DETERMININGB1,e(z) AND

B2,e(z) ARE COMPUTED FROMx(n) FILTERED THROUGH FILTERS

P1(z) = 1 + z−1 AND P2(z) = 1− z−1, RESPECTIVELY.

(D) IMPLEMENTATION WITH SYMMETRIC LP (BASED ON [12]), m

ODD. SYMMETRIC LINEAR PREDICTORB1,o(z) IS OPTIMIZED

USING EQ. 5 WITH p = m + 1, WHERE AUTOCORRELATIONS ARE

COMPUTED FROM SIGNALx(n). B2,o(z) IS OPTIMIZED USINGEQ.

5 WITH p = m− 1 BY COMPUTING AUTOCORRELATIONS FROM

SIGNAL x(n) FILTERED THROUGH THE CASCADE OF

P1(z) = 1 + z−1 AND P2(z) = 1− z−1.
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AMPLITUDE RESPONSES OF PRE-FILTERS P1(z) AND P2(z) USED

IN FIG. 2(C), SAMPLING FREQUENCY EQUALS8 KHZ. MAXIMUM

VALUES OF BOTH SPECTRA NORMALIZED TO0 DB.

in Fig. 2(c) and Fix. 2(d). More specifically, we aim to
take advantage of the parallel structures based on the
symmetric linear prediction so as to combine the low-
pass characteristics of two conventional LP analyses of
successiveprediction orders. The use of linear predic-
tions of successive orders is motivated by the intermodel
interlacing property of the LSP decomposition [15] [16],
using which it is possible to easily guarantee the stability
of the all-pole filter to be designed (see Section III-
B). Hence, let us start by linear predictions of orders
m and m − 1 (with m even) implemented using the
symmetric linear prediction shown in Fig. 2(c) and 2(d),
respectively. To design anm’th order all-pole filter that
emphasizes low frequencies can now be attained by
combining the upper branch of Fig. 2(c), i.e., the branch
with a symmetric linear prediction preceded by a fixed
low-pass filter, to the upper branch of Fig. 2(d), i.e.,
the branch with a symmetric linear prediction preceded
by no pre-filter. In order to guarantee the stability of
the final all-pole filter, the symmetric linear predictor
corresponding to the upper branch of Fig. 2(d) needs
to be combined with a first order FIR with its zero at
z = 1. These stages together make up the new method
LPLE, the computation of which can be summarized
(with prediction order equal tom) as follows:

1) From implementation of linear prediction of order
m (upper branch of Fig. 2(c)): Compute the sym-
metric linear predictorB1,e(z) using Eq. 4 and 5
with p = m by defining autocorrelations fromx(n)
filtered throughP (z) = 1 + z−1.

2) From implementation of linear prediction of order
m − 1 (upper branch of Fig. 2(d)): Compute the
symmetric linear predictorB1,o(z) using Eq. 4
and 5 with p = (m − 1) + 1 = m by defining
autocorrelations directly from signalx(n). (Notice

from Fig. 2(b) and Fig. 2(d) thatB1,o(z) is the
polynomial P (z) of the LSP decomposition de-
fined for the(m−1)’th order LP predictor. Hence,
the order ofP (z), and thereby also the order of
B1,o(z), must be one larger than(m− 1), i.e., the
computation ofB1,o(z) usesp = (m−1)+1 = m.)

3) From the two symmetric linear predictors obtained,
construct the following polynomials:Se(z) =
B1,e(z)(1 + z−1) and So(z) = B1,o(z)(1 − z−1).
Notice thatSe(z) is symmetric andSo(z) is anti-
symmetric.

4) The final transfer function of the LPLE predictor is
obtained by adding polynomialsSe(z) and So(z)
and by scaling the sum by1/2:

X(z) =
1
2

[Se(z) + So(z)] . (8)

It is worth noticing that the final predictorX(z)
obtained by the LPLE method is of orderm, but, because
it is computed using LP analysis of successive orders, it
is naturally sub-optimal in terms of the residual energy.
In other words, there is a loss in prediction gain when the
conventional LP predictor of orderm is replaced with
the LPLE predictor of the same order [5].

B. Stability of LPLE

The m’th order all-pole filter given in Eq. 8 can
be easily proved to be stable by using the intermodel
interlacing property of the LSP decomposition (property
No. 4 in Section II-B) [15], [16]. According to this
theory, the roots of two symmetric LSP polynomials
defined for LP predictors of successive prediction orders
are interlaced on the unit circle. Referring to stages No. 1
and No. 2 at the end of Section III-A, it is implied
that roots ofB1,e(z) andB1,o(z) must interlace because
B1,e(z) and B1,o(z) are equal to the symmetric LSP-
polynomials (i.e.,P (z)) defined from LP-predictors of
ordersm and m − 1, respectively, but with the trivial
root at z = −1 of P (z) computed from them’th order
LP predictor excluded. Hence, polynomialsSe(z) and
So(z) in Eq. 8 have all theirm complex roots interlaced
on the unit circle. In addition,Se(z) and So(z) have a
single real root atz = −1 andz = +1, respectively, due
to stage No. 3 in the LPLE procedure. Hence,Se(z) and
So(z) not only have an equal number of roots on the unit
circle but they also interlace. This implies, according to
the intramodel interlacing property, i.e, property No. 3
in Section II-B, that the sum ofSe(z) and So(z) must
be minimum-phase and, consequently, the corresponding
all-pole filter is always stable.

Note that the intramodel interlacing property, which
was utilized in the proof above, is typically used in
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literature related to the LSP polynomials computed from
the m’th order predictor given by the conventional LP
analysis, i.e., Eq. 2. However, the intramodel interlacing
theorem holds true for arbitrary polynomials, whose
roots are interlaced on the unit circle [11]. Therefore, it
can be used also to prove the minimum-phase property
of the sum ofSe(x) andSo(z).

IV. RESULTS

A. Speech material

In order to compare the performances of conventional
LP and LPLE, we recorded the eight vowels of the
Finnish language produced by five female and five male
speakers. Each vowel was pronounced using sustained
phonation and the natural fundamental frequency of the
speaker. The recording was done in an anechoic chamber
using a high-quality condenser microphone (Brüel&Kjær
4188). The data were first saved onto a DAT from which
the vowels were transferred into a computer using a
sampling frequency of 22.050 kHz and a resolution of 16
bits. In the computer, the sounds were high-pass filtered
in order to remove low-frequency fluctuations picked up
in the recordings. The signals were then down-sampled
to the sampling frequency of 8 kHz. The final analysis
bandwidth of the vowels was between 50 Hz and 4.0
kHz.

B. Experiments

Conventional LP analysis and LPLE were computed
with the prediction orderm = 8 and the frame size
of 200 samples (= 25 ms). In computing the autocor-
relation terms, Hamming windowing was used. Since
all-pole modeling in the experiments was deliberately
computed with a prediction order that is slightly too
small with respect to the sampling frequency in question,
we used a conventional technique, the pre-emphasis [5],
to improve the performance of low-order all-pole filters
in spectral modeling. The goal of the pre-emphasis is
to decrease spectral dynamics of vowel sounds prior
to all-pole modeling and thereby improve modeling of
higher formants. As a pre-emphasizer we used a first
order FIR with its zero atz = 0.95. Hence, the all-
pole spectra to be analyzed were obtained by cascading
the 8th-order all-pole filters given by the two predictive
methods with the de-emphasizer, i.e., the inverse of the
pre-emphasis FIR. Furthermore, all-pole filters computed
by LPLE yield sometimes poles located close to the unit
circle especially in modeling F1. In order to alleviate
the underestimation of formant bandwidths, the predictor

polynomial given by LPLE was windowed by an expo-
nential functionw(n) = 0.98n, 0 ≤ n ≤ m. It is well-
known [22] that this windowing corresponds to replacing
the original rootsz = zi, 1 ≤ i ≤ m of the predictor
polynomial with ẑ = 0.98zi, 1 ≤ i ≤ m.

The two all-pole modeling techniques were compared
in two experiments. In the first experiment (Experiment
I), we simply extracted the number of formants indicated
by the eighth order all-pole spectra. The formant was
identified as a local maximum in the amplitude spectrum,
i.e., the frequency at which the derivative of the all-pole
amplitude spectrum changes its sign from positive to
negative. In the second experiment (Experiment II), we
made a small subjective test as follows. Firstly, eighth
order all-pole filters were determined by the conventional
LP and by LPLE for vowels /a/, /i/ and /u/ from voices
produced by a male subject. (These three phonemes
were selected because they are known to represent the
corners of the F1-F2 representation of the vowel sounds
[23].) The all-pole filters obtained were then used to
synthesize sounds (duration 300 ms) by using impulse
train excitations determined separately for each vowel.
The position of impulses in the excitation waveform
was computed with the help of a residual signal given
by a higher order (m = 16) LP analysis: the impulse
positions of the excitation were set to coincide with
the main peaks of each period of the residual given
by the 16th order LP analysis. This procedure ensured
that the synthetic vowels were of the same pitch as
the corresponding original vowel. The signals were then
played to a panel of seven naive listeners. Each listener
was asked to assess which one of the two synthetic
candidates was perceptually closer to the original vowel.
A neutral opinion stating that the panelist did not hear
any difference between the two candidates, was also
permitted. The listeners were allowed to listen to the
sounds as many times as they wished.

Results from Experiment I (Table I) indicate that
LPLE was able to find a larger number of formants
from the vowel data analysed. The maximum number of
formants to be modeled by 8th order all-pole modeling is
four. This maximum number of formants was indicated
in 18 and 49 cases by LP and LPLE, respectively. The
smallest number of formants indicated by the two all-
pole techniques was two. This minimum amount of
formants was indicated by conventional LP in 14 vowels
whereas LPLE showed the same amount of formants in
only 4 cases. Overall, LPLE showed a larger number
of formants than conventional LP in 37 cases, whereas
only in 3 sounds were there a larger number of formants
indicated by conventional LP than by LPLE.

The results of Experiment II show that listeners pre-
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Subject /a/ /e/ /i/ /o/ /u/ /y/ /̈a/ /ö/
Male 1 2 4 4 4 4 4 3 4 2 4 3 3 4 4 3 4
Male 2 3 4 4 4 4 4 3 4 2 3 3 4 3 3 4 4
Male 3 4 4 4 4 3 3 2 4 2 4 4 4 3 4 3 4
Male 4 4 4 3 4 3 3 3 4 3 4 3 4 3 3 3 3
Male 5 3 4 4 4 4 4 3 4 3 4 2 3 4 4 3 4
Female 1 4 4 3 4 3 3 4 4 3 4 4 4 3 3 3 3
Female 2 3 3 2 4 3 3 3 4 2 3 3 2 3 3 3 3
Female 3 3 3 3 4 2 3 3 2 2 4 3 2 3 4 3 3
Female 4 3 3 3 3 3 3 4 4 3 4 2 3 3 4 3 3
Female 5 3 3 2 2 2 3 4 4 3 4 3 4 2 4 3 3

TABLE I

NUMBER OF FORMANTS INDICATED BY CONVENTIONALLP AND LPLE (m = 8), RESPECTIVELY, FOR EIGHTFINNISH VOWELS

PRODUCED BY TEN SUBJECTS.

ferred the quality of the vowels synthesized with LPLE
especially in the case when F1 and F2 of the underlying
vowel were located at the lower end of the frequency
band. The vowel /u/, which is the the vowel characterized
by the lowest values of F1 and F2, was perceived by
all the listeners to be closer to the original vowel when
the synthesis was carried out with LPLE. The vowel /a/
yielded almost the same result, except for one listener
who considered the sound synthesized by conventional
LP to be of a more natural quality. In the case of the
vowel /i/, which has the highest value of the second
formant among the vowels, the opinions of the pan-
elists veered away from favoring LPLE: three panelists
regarded the perceptual quality of the vowel synthesized
by conventional LP to be closer to the original one, three
considered the two methods to be of the same quality and
two considered the quality given by LPLE to be better.

Two representative examples of the all-pole spectra
obtained are shown in Fig. 4. Both figures illustrate how
LPLE more clearly indicates the lowest two formants in
comparison to conventional LP.

V. CONCLUSIONS

Herein, we have presented a new linear predictive
technique which puts more emphasis on the lower fre-
quency range of the speech spectrum. The method is
based on first interpreting conventional linear predictors
of successive prediction orders with parallel structures
using the concept of symmetric linear prediction. The
parallel structure of the new method is then obtained
by combining a symmetric linear predictor preceded by
a low-pass pre-filter from them’th order prediction to
a symmetric predictor preceded by no pre-filter of the
(m− 1)’th order prediction.

Computation of anm’th order LPLE filter requires a
larger number of arithmetic operations than computation
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EXAMPLES OF 8TH ORDER ALL-POLE SPECTRA COMPUTED BY

CONVENTIONAL LP (DOTTED LINE) AND BY LPLE (SOLID LINE).
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of the conventional LP filter of the same order. This is
especially due to the fact that in determining an LPLE
filter of orderm with the algorithm described in Section
III-A, one needs to inverse two autocorrelation matrices
(stages No. 1 and 2 in the algorithm) both of which are
of dimensions(m/2)×(m/2). Moreover, autocorrelation
terms needed in stage 1 and 2 are different due to the fact
the pre-filterP1(z) is involved in stage 1 but not in stage
2. However, the number of computations can be reduced
by interpretingB1,e(z) in stage 1 andB1,o(z) in stage
2 as the LSP-polynomialP (z) determined for am’th
order and(m− 1)’th order LP predictor, respectively.

In the current paper, the emphasis has been devoted
to presenting the new algorithm, to show that the all-
pole filters obtained are stable and to make preliminary
experiments with vowel sounds. In principle, it is possi-
ble to compare the proposed method with conventional
LP of the same prediction order as a part of a real
speech coder but that was not in the scope of the present
paper. It is, however, worth noticing that there are no
principal obstacles to replace the conventional LP with
LPLE also inside a speech coding algorithm, because
both algorithms define a minimum-phase predictor of
the same order with a reasonable computational load.
In the preliminary experiments performed in the current
study, we focused on the improvement in the modeling
of the lowest formants and, therefore, it was a reasonable
choice to select vowels as speech data. An extensive
evaluation of the new method would also call for using
larger speech material and to test, how the performance
of LPLE behaves in such speech sounds (e.g., fricatives),
which have their energy concentrated on higher frequen-
cies.

The proposed method always yields stable all-pole
filters. The method is well-suited to all-pole modeling
applications where prediction order needs to be low and
where more emphasis needs to be put on the modeling
of the lower part of the frequency range. One such
area, although not studied in the present survey, is linear
predictive analysis of wide-band speech, which calls for
using large prediction orders when conventional LP is
used. With the method proposed in this paper, however,
it is possible to use smaller prediction orders yet obtain
all-pole models capable of separating the most important
lowest formants.
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