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ABSTRACT

In recent works, we have studied linear predictive models
constrained by time-domain filters. In the present study, we
will study the one-dimensional case in more detail. Firstly,
we obtain root-exchange properties between the roots of an
all-pole model and corresponding constraints. Secondly, us-
ing the root-exchange property we can construct a novel
matrix decompositionAT RA# = I, whereR is a real
positive definite symmetric Toeplitz matrix, superscript#

signifies reversal of rows andI is the identity matrix. In
addition, there exists also an inverse matrix decomposition
CT R−1C# = I, whereC ∈ C is a Vandermonde matrix.
Potential applications are discussed.

1. INTRODUCTION

Let us define the residualen of a linear predictive model of
orderm as

en = xn +
m−1∑
i=0

hix̃n−i, (1)

wherexn is the wide-sense stationary input signal,hi (0 ≤
i ≤ m − 1) are the model parameters andx̃n = cn ∗ xn,
where cn =

∑l
k=0 ckξn−k is the impulse response of a

causal FIR filter. In literature, this type of models are some-
times named generalised linear predictive models [1]. The
transfer function of the predictor can be written as follows

A(z) = 1 +
m−1∑
i=0

l∑
k=0

hickz−i−k = 1 + C(z)H(z), (2)

whereC(z) andH(z) are the Z-transforms ofcn andhn,
respectively.

In contrast to conventional linear prediction (LP) (e.g.
[2]) this model isconstrainedsince it defines a predictor
of orderm + l − 1 with m model parameters. Note that
according to Eq. 2,x(n) is predicted from the samples ofx̃n

from thecurrentto them−1’th delayed sample. One would
therefore easily be led to believe that the predictor is non-
causal. Fortunately, however, if the FIR filter is non-trivial
(i.e. c0 and at least one of the coefficientsck for k ≥ 1
is non-zero) then the residualen can be determined, since

its computation (Eq. 1) contains terms ofxn−i, wherei ∈
[0,m+l−1], and the optimisation problem is unambiguous.
The transfer function of the predictor obtained will therefore
have a coefficient ofz0 that is generally not equal to one.

In matrix notation, Eq. 1 becomes

en = bT x + hT CT x, (3)

where x = [x0 . . . xm+l−1]
T is the input signal,h =

[h0 . . . hm−1]
T the parameter vector andbi = [1 0 . . . 0]T .

The convolution matrixC ∈ R(m+l)×m is defined such that
its elements areCij = c(j − i).

Straightforward minimisation of the expected valueE[·]
of the squared residual,∂E[e2(n)]/∂h = 0, yieldsCT RCh
= −CT Rb, whereR = E[xxT ] is the autocorrelation ma-
trix. This solution is unique sinceR is positive definite and
C of full rank, and the solution is thus the global minimum.

Equivalently, the minimum of the residual can be found
by defininga = b + Ch, which yieldsE[e2(n)] = aT Ra.
Sincea− b = Ch and a− b is therefore in the column
space ofC, a suitable constraint isCT

0 (a− b) = 0, pro-
vided thatb is not in the null-space ofC. The null-space
C0 of C is defined byCT C0 = 0 whereC0 ∈ R(m+l)×l.
The objective function is then

η(a,g) = aT Ra− gT CT
0 (a− b), (4)

and the minimum is atRa = C0g, where the Lagrange
multiplier vectorg = [γ1, . . . , γl]

T can be solved from
equationCT

0 R−1C0g = CT
0 b [3].

In our earlier work, we have shown thatA−1(z) is stable
if the zerosξi (1 ≤ i ≤ l) of C(z) are realξi ∈ R, |ξi| > 1
andγi > 0 (1 ≤ i ≤ l) [4, 5]. However, in this work we
will concentrate on the properties of this model forl = 1.

The results presented in this work are mostly of theoreti-
cal significance and cannot directly be applied to real-world
applications. Nevertheless, gaining information on the rela-
tion between Toeplitz matrices and the roots of correspond-
ing polynomials could supply improvement to root-finding
algorithms as well as provide us with the ability to control
the stability of arbitrary predictors.
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2. MINIMUM-PHASE PROPERTY

Definition In this article we will adopt the following nota-
tion:
d a column vectord = [d0, . . . , dm]T .
d# vectord with its rows reversed.
d± the symmetric and antisymmetric part of vec-

tor d, that is,d± = d± d#.
D(z) the polynomial corresponding to the Z-trans-

form of vectord.
T the set of all real positive definite symmetric

Toeplitz matrices.

Lemma 1 (Null-space) Let polynomialC(z) be defined as
in Eq. 2 and the corresponding convolution matrixC as
defined in Eq. 3. IfC(ξi) = 0 then it follows that vector

ci = [1, ξ−1
i , . . . , ξ

−(m+l−1)
i ]T is in the null-space ofC.

Consequently, the complete null-spaceC0 of C is the set of
vectorsci where theξi’s (1 ≤ i ≤ l) are the zeros ofC(z),
provided that theξi’s are distinct.

Matrices of formC0 (in Lemma 1) are known as Vander-
monde matrices [6]. In the following, we will drop the sub-
script 0 and byC denote all Vandermonde matrices that ap-
pear.

Lemma 2 (Minimum-phase constraint) Let R ∈ T and
predictora be the solution to (l = 1)

Rai =
[
1, ξi, ξ2

i , . . . , ξm
i

]T
. (5)

Predictora is minimum-phase ifξi ∈ C, |ξi| < 1. Further,
for |ξi| = 1 predictora will have its roots on the unit circle.

Proof of these lemmata was presented in [4, 5].

3. THE ROOT-EXCHANGE PROPERTY

Lemma 3 (Root exchange)Let a0 be a solution to Eq. 5
with ξ0 ∈ C, |ξ0| < 1, and let ξi (1 ≤ i ≤ m) be the
zeros of polynomialA0(z) (with coefficientsa0). Then the
polynomialsAi(z) (1 ≤ i ≤ m), with coefficientsai solving
Eq. 5 usingξi, have zerosξk for i 6= k.

In other words, exchanging a rootξk from Ai(z) for
ξi, corresponds in Eq. 5 to replacingξi with ξk. Then
Ai(z)(1 − ξiz

−1) = ζikAk(z)(1 − ξkz−1), whereζik is
some scalar that depends oni andk.

The root exchange property of one root is illustrated in
Fig. 1.

Proof Polynomial Ai(z) can be factored asAi(z) =(
1− ξkz−1

)
B(z), or equivalently,

ai = B
[

1
−ξk

]
=


b0 0
b1 b0

...
...

0 bm−1


[

1
−ξk

]
. (6)
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Fig. 1. An example of the root exchange property of con-
strained LP modelsAi(z) (m = 8). Coefficient vectorsai

of Ai(z) solveRai = ci whereci = (ξk
i )k=0...m andξi is

a root ofCj(z) for i 6= j.

FromRai = ci we obtain

ci = RB
[

1
−ξk

]
=


d0 d−1

d1 d0

...
...

dm dm−1


[

1
−ξk

]
, (7)

which defines the coefficientsdi uniquely. From 7 we can
readily obtain relation

d0 d−1

d1 d0

...
...

dm dm−1


[

1
−ξi

]
= ηck, (8)

whereη is a positive constant. Recall that matrixB corre-
sponds toai deconvoluted by(1 − ξkz−1) and Eq. 8 cor-
responds to convolution of another term(1− ξiz

−1). Since
the result on the right hand side in Eq. 8 isηck, it must
be equal toηck = ηRak. The corresponding polynomials
Ai(z) andAk(z) are thus equal except for a scaling coeffi-
cient and an exchanged zeroξk for ξi. This concludes the
proof. �

Lemma 4 (Symmetric root exchange)Let a0 be a solu-
tion to Eq. 5 withξ0 ∈ R. Then for the symmetric or
antisymmetric parta±0 we haveRa±0 = c±0 . Let ξi with
1 ≤ i ≤ m be the roots ofA0(z). Then

Ra±i = c±i (9)

for 0 ≤ i ≤ m. In other words,Ai(z) has zerosξk with
i 6= k and|ξi| = 1 for i 6= 0.
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Fig. 2. An example of the symmetric root exchange prop-
erty of constrained LP modelsA+

i (z) (m = 8). Coefficient
vectorsa+

i of A+
i (z) solveRa+

i = c+
i wherec+

i is the sym-
metric part ofci = (ξk

i )k=0...m andξi is a root ofCj(z) for
i 6= j.

The root exchange property of conjugate pair roots on
the unit circle is illustrated in Fig. 2.

Proof Since predictor a0 is minimum-phase due to
Lemma 2, its symmetric and antisymmetric partsa±0 will
have their roots on the unit circle [7, 9]. By factoring a con-
jugate root pairξi andξ−1

i (1 ≤ i ≤ m) from a0, that is,
A0(z) = (1 − (ξi + ξ−1

i )z−1 + z−2)B(z), we can read-
ily proof the root exchange property similarly as in proof of
Lemma 2. �

Note that in the proof above,ξ0 in c±0 will appear ina±i
(1 ≤ i ≤ m) as a root pairξ0 andξ−1

0 . Especially, when
ξ0 → 0, the first and last coefficients ofa±i will tend to zero.

Further, note that by proper scaling, we can makea±i
andc±i real. This is a significant advantage in reduction of
complexity (between the root exchange and symmetric root
exchange properties) if we are to apply root exchange in a
computational algorithm.

An interesting consequence of Lemma 4 is thata±i al-
ways has distinct roots. To see this, letξk be a double
root and ofA±i (z). ThenA±k (z) will also have a rootξk

by the root exchange rule. It follows that0 = A±k (ξk) =
A±k (ξ−1

k ) = c±k
T
a±k = a±k

T
Ra±k . This is a contradiction

sinceR is positive definite, and the assumption thatξk is
a double root is therefore defective. Moreover, if we con-
sider the family of equations Eq. 9 withξ0 ∈ (−1,+1),
none of these models will have overlapping roots. In other
words, the roots follow monotonic paths on the unit circle
as a function ofξ0.

Lemma 5 (Reverse decomposition)For a real, positive
definite and symmetric Toeplitz(m + 1) × (m + 1) matrix
R, there exists a decomposition matrixA ∈ C such that
AT RA# = I, whereI is the identity matrix.

Note thatA is not unique and that we indeed use the trans-
position T operator and not the complex conjugate trans-
poseH , also known as the hermitian. Further, equation
AT RA# = I is equivalent with(A#)T RA = I since
R is symmetric.

Proof Let vectorsai, ξi andci be defined as in Lemma 3.
Further, let matricesA andC consist of column vectorsai

andci, respectively, such thatRA = C. We know that
the roots ofAi(z) areξk with i 6= k and0 ≤ i, k ≤ m.
Consequently,Ai(ξk) = aT

i c#
k = 0 for i 6= k and thus

AT C# = D, whereD is a diagonal matrix with positive
elements.

It follows thatD = AT C# = AT RA#. Since coef-
ficients ofD are non-zero, we can, with suitable scaling of

the columns ofA, find anÂ such that̂AT RÂ
#

= I. �

As a corollary to Lemma 5, we can readily see that there
exists a matrix decomposition for the inverse ofR such that
ĈT R−1Ĉ# = I. The inverseR−1 exists sinceR is strictly
positive definite.

While Lemma 5 uses Lemma 3, a similar decomposition
can be constructed using the result of Lemma 4. Then both
the symmetric and antisymmetric parts ofa±i andc±i have
to be included in the matricesA andC, respectively. The
advantage of this approach is that the matricesA andC can
then be scaled to real while the construction above produces
matricesA andC that are generally complex.

4. DISCUSSION AND SUMMARY

We have presented root-exchange properties between the
all-pole form of the constrained linear predictive model and
the corresponding constraint. Further, as a corollary we ob-
tained novel matrix decompositions for real positive definite
symmetric Toeplitz matrices and its inverse, the latter with
a Vandermonde matrix.

Intuitively, the root-exchange property can be explained
by the fact that the constraintci is equivalent to requiring
that Ai(z) is strictly positive atξ−1

i , that is, Ai(ξ−1
i ) =

aT
i ci = aT

i Rai > 0. Therefore,Ai(z) cannot have a zero
atξ−1

i . When a zeroξk is exchanged forξi thenAk(ξk) > 0
and it is not a surprise thatAk(ξi) = 0.

The conventional LP model is a special case of con-
strained linear predictive models, whereby Eq. 5 withξ0 =
0 becomesRa0 = [1, 0, . . . , 0]T . If vectorsai are defined
with the root-exchange property as in Lemmata 3 and 5,
then the correspondingAi(z) with 1 ≤ i ≤ m will have



Ai(0) = 0, and them’th componenta(i)
m of ai is thus al-

ways a
(i)
m = 0. In other words, using the root-exchange

property, we have means to reduce the(m + 1) × (m + 1)
matrix problem to am × m problem. This property could
potentially be used for order reduction of polynomial root-
finding problems.

Unfortunately, in general, the matrix reverse decompo-
sitions are non-unique and we can find several matricesA
andC that satisfyÂT RÂ

#
= I and ĈT R−1Ĉ# = I.

However, if we constrain one root, e.g. the zero root in the
case of conventional LP, then the decomposition becomes
unique. (We have then assumed thatC is constrained to
complex Vandermonde matrices andRA = C.) Moreover,
the question of finding the decomposition matrices without
solving first the roots of polynomialA0(z) remains open.
On the other hand, assuming that we can, with some con-
venient criterion, constrainC to Vandermonde matrices, it
could be possible to use this decomposition for iterative
root-finding. Such a root-finding algorithm could be applied
to any polynomial with distinct roots inside the unit circle,
sinceRa0 = [1, 0, . . . , 0]T uniquely definesR.

The presented theory can be partially generalised to in-
finite dimensional matrices of functional analysis. Then,
the Toeplitz and Vandermonde matricesR andC become
Toeplitz (bi-infinite) and Vandermonde (infinite or bi-infi-
nite) operators, and matrixA is zero-extended into infinity
(infinite or bi-infinite). This extension of the Toeplitz ma-
trix implies (whenξ = 0) that we introduce new values
of Rij corresponding to zero reflection coefficient value.
Consequently, the extension is quite elegant, since it does
not introduce any new information to the problem. In addi-
tion, this is a sufficient criterion to make the decomposition
unique. However, the row-reversal operation is not as easily
transfered to the infinite dimensional case, since it requires
taking elements starting from infinity and making them the
first elements. [8]

Note that the(n + k) × n zero extensioñA of n × n
matrix A is not equivalent toA in the reflection decompo-
sition sense. In other words, sinceAT RA# = I we obtain

ÃT RÃ
#

= ÃT C̃# = DkAT C# = Dk whereC̃ is the
extension ofC (which is also a Vandermonde matrix),D
is a diagonal matrix with the exponents ofC and we have
assumed thatR has been extended with zero reflection co-
efficients. This implies that we have a description of the au-
tocorrelation matrix very much alike the Krylov-subspace
[6]. The author believes, that there is some potential in this
property that could lead to new root-finding algorithms.

In our earlier work [4, 5], we have shown that polynomi-
alsAi(z) whose coefficients solve Eq. 5 with real|ξi| < 1,
form a convex space of polynomials with the minimum-
phase property. The root-exchange property presented in
this paper, is compatible with the convex space formula-
tion only as long as the exchanged roots are real. The con-

vexity property can be used, for example, in interpolation
between polynomials when optimising the model by a fre-
quency domain criterion. Currently, however, the author has
not found simple exchange-rules for complex conjugate root
pairs, other than those on the unit circle.

Roots of presented models which lie on the unit circle
must always be distinct. This can easily be seen using the
root-exchange rule, by exchanging one of the multiple ze-
ros with a distinct zero. The obtained model will thus have
a zero on the diagonal of matrixD (in Lemma 5) andR
cannot be positive definite. This property could be used for
creation of polynomial pairs with interlacing zeros on the
unit circle. Recall that such a property is useful in creation
of stable predictors from symmetric/antisymmetric polyno-
mial pairs [9].

While the results of this paper do not present any straight-
forward applications, at least as far as the author is aware,
they still offer theoretical insight into the properties of con-
straints of linear predictive models as well as the properties
of Toeplitz matrices and their relation to Vandermonde ma-
trices.
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