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ABSTRACT

In recent works, we have studied linear predictive models
constrained by time-domain filters. In the present study, we
will study the one-dimensional case in more detail. Firstly,
we obtain root-exchange properties between the roots of an
all-pole model and corresponding constraints. Secondly, us-
ing the root-exchange property we can construct a novel
matrix decompositioA”’RA# = I, whereR is a real
positive definite symmetric Toeplitz matrix, superscript  wherex — [xg ... :cmH_l]T is the input signalh =
signifies reversal of rows anHlis the identity matrix. In 5, p,._,]" the parameter vectoramd = [10 ... 0]".
addition, there exists also an inverse matrix decompositionThe convolution matrixC € R(m+Dxm js defined such that
CTR™'C# =1, whereC € Cis a Vandermonde matrix.  ts elements ar€;; = c(j — i).

Potential applications are discussed. Straightforward minimisation of the expected valtp]
of the squared residudE[e?(n)]/0h = 0, yieldsCTRCh
= —CTRb, whereR = E[xx] is the autocorrelation ma-
trix. This solution is unique sincR is positive definite and
C of full rank, and the solution is thus the global minimum.
Equivalently, the minimum of the residual can be found
by defininga = b + Ch, which yieldsE[e?(n)] = al Ra.
Sincea — b = Ch anda — b is therefore in the column
space ofC, a suitable constraint i€ (a — b) = 0, pro-
vided thatb is not in the null-space of. The null-space
C, of C is defined byCTC, = 0 whereC, € R(m+Hxl,
The objective function is then

its computation (Fq. 1) contains termsof_;, wherei €

[0, m+1—1], and the optimisation problem is unambiguous.
The transfer function of the predictor obtained will therefore
have a coefficient of" that is generally not equal to one.

In matrix notation, fq. 1 becomes

en = bl x+hTCTx, ©))

1. INTRODUCTION

Let us define the residua), of a linear predictive model of
orderm as

m—1
€n = Ty + Z hii‘nfiy (1)

i=0
wherez,, is the wide-sense stationary input sigrial (0 <
i < m — 1) are the model parameters afng = ¢, * x,,
wherec, = 22:0 crén—k IS the impulse response of a
causal FIR filter. In literature, this type of models are some-
times named generalised linear predictive madels [1]. The

_aT T~T
transfer function of the predictor can be written as follows n(a,g) =a Ra—g C;(a—b),

4

m—1 | ik and the minimum is aRa = Cyg, where the Lagrange
A) =14 Y hiaz " =14+C(:)H(2), @)  multiplier vectorg — [y1, ..., )" can be solved from
i=0 k=0

equationCI R~1Cyg = CIH]3].
In our earlier work, we have shown that ! (z) is stable

whereC'(z) and H(z) are the Z-transforms aof,, and h,,,
if the zerosg; (1 <i <l)of C(z) arereal; e R, |§] > 1

respectively.

In contrast to conventional linear prediction (LP) (e.qg.
2] this model isconstrainedsince it defines a predictor
of orderm + [ — 1 with m model parameters. Note that
according to [fd. 2;(n) is predicted from the samples &f
from thecurrentto them — 1'th delayed sample. One would

andy; > 0 (1 <4 < I[]J4]15]. However, in this work we
will concentrate on the properties of this model fet 1.

The results presented in this work are mostly of theoreti-
cal significance and cannot directly be applied to real-world
applications. Nevertheless, gaining information on the rela-

therefore easily be led to believe that the predictor is non- tion between Toeplitz matrices and the roots of correspond-

causal. Fortunately, however, if the FIR filter is non-trivial
(i.e. ¢o and at least one of the coefficients for & > 1
is non-zero) then the residual can be determined, since
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ing polynomials could supply improvement to root-finding
algorithms as well as provide us with the ability to control
the stability of arbitrary predictors.
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2. MINIMUM-PHASE PROPERTY

Definition In this article we will adopt the following nota-

tion:

d a column vectod = [dy, ..., d.]7.

d#  vectord with its rows reversed.

d* the symmetric and antisymmetric part of vec-
tord, thatis,d* = d + d*.

D(z) the polynomial corresponding to the Z-trans-
form of vectord.

T the set of all real positive definite symmetric

Toeplitz matrices.

Lemma 1 (Null-space) Let polynomialC(z) be defined as
in Eq] 2 and the corresponding convolution matfixas
defined in Hq. 3. If0(¢;) = 0 then it follows that vector
¢ =[1, &7, ..., & "I is in the null-space of.
Consequently, the complete null-sp&ctgof C is the set of
vectorsc; where theg;’s (1 < ¢ < [) are the zeros of’(z),
provided that the;’s are distinct.

Matrices of formCy (in Lemn{g 1) are known as Vander-

monde matricgs$ [6]. In the following, we will drop the sub-
script 0 and byC denote all Vandermonde matrices that ap-
pear.

Lemma 2 (Minimum-phase constraint) Let R € T and
predictora be the solution tol(= 1)

Rai:[lagiv L277€;m]T (5)

Predictora is minimum-phase §; € C, |£;| < 1. Further,
for |¢;| = 1 predictora will have its roots on the unit circle.

Proof of these lemmata was present&difih [4, 5].

3. THE ROOT-EXCHANGE PROPERTY

Lemma 3 (Root exchange)Let a, be a solution to Hg. 5
with & € C, |§] < 1, and let; (1 < ¢ < m) be the

zeros of polynomial,(z) (with coefficientsay). Then the
polynomialsd;(z) (1 < i < m), with coefficients; solving

Ef] 5 using:;, have zeros, for i # k.

In other words, exchanging a ro¢t from A;(z) for
&, corresponds in Eff] 5 to replacigg with &,. Then
Ai(2)(1 = &271) = GrAi(2)(1 — &=27'), whereg is
some scalar that dependsoandk.

The root exchange property of one root is illustrated in

Fif] 1.
Proof Polynomial 4;(z) can be factored asi;(z)
(1 —&z71) B(z), or equivalently,

bo 0
1 b1 bo 1
al‘:B{—&J: L {—ﬁk]' ©
0 bm—l
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Fig. 1. An example of the root exchange property of con-
strained LP modelsl;(z) (m = 8). Coefficient vectors;

of A;(z) solveRa; = c; wherec; = (£¥)k—o.m andg; is
aroot ofC;(z) for i # j.

FromRa; = ¢; we obtain

dy d-q
d d
1 1 0 1
;i =RB = . , (7
i e I A U
dm dm—l

which defines the coefficientg uniquely. Frdm 7 we can
readily obtain relation

do d—

dy do 1

|: _gi :| = NCk; (8)
dm dm—l

wheren is a positive constant. Recall that matixcorre-
sponds taa; deconvoluted by(1 — &,2~1) and Eﬂ 8 cor-
responds to convolution of another tefin— &;21). Since
the result on the right hand side in [Hg. 8y, it must
be equal tajc;, = nRay. The corresponding polynomials
A;(z) and A, (z) are thus equal except for a scaling coeffi-
cient and an exchanged zefp for &;. This concludes the
proof. |

Lemma 4 (Symmetric root exchange)Let a, be a solu-
tion to E] 5 with{, € R. Then for the symmetric or

antisymmetric para: we haveRa; = cZ. Let¢; with
1 <4 < m be the roots ofd,(z). Then
Ra’ =c* 9)

for 0 < ¢ < m. In other words,A;(z) has zeros;, with
i # kand|¢;| = 1fori #0.



1.5F ‘ — Lemma 5 (Reverse decompositionfor a real, positive
o A® definite and symmetric Toeplitz: + 1) x (m 4 1) matrix
A(2) Sy - m
- * T R, there exists a decomposition matéx € C such that
® o ATRA?" =1, wherel is the identity matrix.
£ 0> ® ® Note thatA is not unique and that we indeed use the trans-
z ol . - position” operator and not the complex conjugate trans-
= pose’’, also known as the hermitian. Further, equation
g ® ® ATRA# = Iis equivalent with(A#)TRA = I since
= 0.5 1 R is symmetric.
o
1k ® , Proof Let vectorsa;, &; andc; be defined as in Len{ma 3.
Further, let matriced\ andC consist of column vectors;
_15h ‘ ] andc;, respectively, such thd®A = C. We know that

1 05 0 05 1 15 2 25 the roots ofA4;(z) are&, with i # k and0 < i, k < m.
Real Part ConsequentlyA; (&) = alc} = 0fori # k and thus

) ] ATC# = D, whereD is a diagonal matrix with positive
Fig. 2. An example of the symmetric root exchange prop- qjements.

erty of constrained LP model$; (2) (m = 8). Coefficient It follows thatD = ATC# — ATRA#. Since coef-

+of AT +_ ot + i B} . : : !
vectorsa,” of A7 (z) S,?IVERai = ¢,/ wherec;" is the sym ficients of D are non-zero, we can, with suitable scaling of
metric part ofc; = (&) k=0...m and¢; is a root ofC; (z) for

it the columns ofA, find anA suchthaA”RA” =1. O

As a corollary to Lemfrja 5, we can readily see that there
The root exchange property of conjugate pair roots on EXIStS @ matrix decomposition for the inversebbuch that
the unit circle is illustrated in . 2. CTR~1C# =1. TheinversdR ! exists sinc&R is strictly
positive definite.

Proof Since predictora, is minimum-phase due to While LemrﬂiSuse_s Lenjtha 3, a similar decomposition
Lemn[d 2, its symmetric and antisymmetric pasfs will can be constructed using the result of ngma 4. Then both
1 . . . :t

have their roots on the unit cifdl€]7, 9]. By factoring a con- the symmetric and antisymmetric partsegf andc;” have

jugate root pai; ande! (1 < i < m) from a, that is to be included in the matriceA andC, respectively. The
Ao(z) = (1 — (& + Efll)z—lq_ Z—_Q)B(Z) we can read-  advantage of this approach is that the matriéeandC can

ily proof the root exchange property similarly as in proof of then be scaled to real while the construction above produces
Lemnid 2. 0 matricesA andC that are generally complex.

Note that in the proof above, in ci will appear ina 4. DISCUSSION AND SUMMARY

(1 < i < m) as a root pait, and¢, '. Especially, when

& — 0, the first and last coefficients ef will tend to zero.  \we have presented root-exchange properties between the
Further, note that by proper scaling, we can make  all-pole form of the constrained linear predictive model and

andc;" real. This is a significant advantage in reduction of the corresponding constraint. Further, as a corollary we ob-

complexity (between the root exchange and symmetric roottained novel matrix decompositions for real positive definite

exchange properties) if we are to apply root exchange in asymmetric Toeplitz matrices and its inverse, the latter with

computational algorithm. a Vandermonde matrix.

An interesting consequence of L_eﬂma 4 is thatal- Intuitively, the root-exchange property can be explained
ways has dlsfnCt roots. 10 see this, lgt be a double  py the fact that the constraikg is equivalent to requiring
root and ofA;"(z). ThenA; (z) will also havef root that A,(z) is strictly positive at¢;™!, that is, 4,(&1) =
by the root exchange rule. It follows that= A;*(§x) = al’c; = al’Ra; > 0. Therefore A;(z) cannot have a zero

A (Y = ¢iTaf = a Rai. Thisis a contradiction  até; ', When a zerd; is exchanged faf; then Ay (¢;) > 0
sinceR is positive definite, and the assumption tlatis and it is not a surprise that, (£;) = 0.

a double root is therefore defective. Moreover, if we con- The conventional LP model is a special case of con-
sider the family of equations d. 9 withy € (—1,+1), strained linear predictive models, wherebf/|Eq. 5 with=
none of these models will have overlapping roots. In other 0 becomeRa, =[1, 0, ..., ()]T. If vectorsa,; are defined
words, the roots follow monotonic paths on the unit circle with the root-exchange property as in Lempjata $]and 5,
as a function ofy. then the corresponding;(z) with 1 < i < m will have
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A;(0) = 0, and them'th componentaﬁ,? of a; is thus al- vexity property can be used, for example, in interpolation
ways a%) = 0. In other words, using the root_exchange between pOIynomiaIS when OptImISIng the model by a fre-
property, we have means to reduce the+ 1) x (m + 1) quency domain criterion. Currently, however, the author has
matrix problem to an x m problem. This property could ~ Nnot found simple exchange-rules for complex conjugate root
potentially be used for order reduction of polynomial root- Pairs, other than those on the unit circle.
finding problems. Roots of presented models which lie on the unit circle
Unfortunately, in general, the matrix reverse decompo- Must always be distinct. This can easily be seen using the
sitions are non-unique and we can find several matrices ~foot-exchange rule, by exchanging one of the multiple ze-
and C that satisfyATRA# — Tand&TR-1G# — 1. ros with a distinct zero. The obtained model will thus have

However, if we constrain one root, e.g. the zero root in the a zero on the diagonal of matr® (in Lemn(d 5) andk

case of conventional LP, then the decomposition beCOmescannot be positive definite. This property could be used for

unique. (We have then assumed tiiats constrained to creation of polynomial pairs with interlacing zeros on the

complx Vndermonde matrices . — C.) Moreover. ULl Focel i ouch a popert s el etor
the question of finding the decomposition matrices without b y y poly

= ; . mial pairsl[9].
solving first the roots of pqunomlano(z) remains open. While the results of this paper do not present any straight-
On the other hand, assuming that we can, with some con- S .
. . . . . forward applications, at least as far as the author is aware,
venient criterion, constrai@® to Vandermonde matrices, it : LT T .
. . o . . they still offer theoretical insight into the properties of con-
could be possible to use this decomposition for iterative

root-finding. Such a root-finding algorithm could be applied straints .Of "”eaf predictive m0d6|s. as well as the properties
) A S L of Toeplitz matrices and their relation to Vandermonde ma-
to any polynomial with distinct roots inside the unit circle,

sinceRag = [1, 0, ..., 0]" uniquely define®. trices.

The presented theory can be partially generalised to in-
finite dimensional matrices of functional analysis. Then, 5. REFERENCES
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