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Theory of the p State in 3He Josephson Junctions

J. K. Viljas and E. V. Thuneberg
Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland

(Received 13 July 1999)

The flow of superfluid 3He-B through a 65 3 65 array of nanometer-size apertures has been measured
recently by Backhaus et al. They find in the current-phase relation a new branch, the so-called p state.
We study two limiting cases which show that the p state arises from the coupling of the phase degree
of freedom to the spin-orbit rotation. The p state exists in a single large aperture, but is difficult to
observe because of hysteresis. A better correspondence with experiments is obtained by assuming a
thin wall, where the Josephson coupling between the two sides arises from a dense array of pinholes.

PACS numbers: 67.57.Np
The flow of superfluid 3He-B through a single
nanometer-size aperture was studied by Avenel and
Varoquaux some time ago [1]. At temperatures near the
superfluid transition temperature Tc, the current-phase
relation is sinusoidal

J�f� � Jc sinf , (1)
as expected for a Josephson junction. Also according to
expectation, they find that the sine form (1) gradually
becomes tilted when the temperature is lowered. More
recently, Backhaus et al. studied a 65 3 65 array of small
apertures [2,3]. They discovered a new behavior, where
the current-phase relation acquires a positive slope at
phase differences f � p . This p state develops when
the temperature is lowered to approximately 0.6Tc.

A few theoretical explanations for the p state have
been proposed [4,5]. In this Letter we present a theory
that is based on the many-component form of the order
parameter in 3He. It differs from the previous sugges-
tions because it contains no unjustified assumptions, and
an order-of-magnitude agreement with experiments is ob-
tained without any adjustable parameters.

Unusual current-phase relations also occur in other
systems. A p junction, where Jc in (1) is negative, can
be induced by adding magnetic impurities to a tunneling
barrier between two s-wave superconductors [6]. Similar
p shifts appear in nonmagnetic junctions between d-wave
superconductors. In addition, current-phase relations with
additional zeros [J�f� � 0 for f fi 0 or p] can appear
for special orientations of the anisotropic crystals [7]. The
p state in 3He differs from these in several respects, most
fundamentally because it arises from the interplay of two
soft modes of the order parameter, the phase f and the
spin-orbit rotation.

We present calculations in two limiting cases. In the
case of a tunneling barrier, the existence of the p state can
be demonstrated by analytic calculations. The parameters
of the tunneling model are estimated using the quasiclas-
sical theory. In the case of a single aperture, the p state
is obtained by numerical simulations using the Ginzburg-
Landau theory of 3He.

Tunneling junction.—The simplest case to demonstrate
the p state is to consider a planar wall through which the
0031-9007�99�83(19)�3868(4)$15.00
3He atoms can tunnel. The energy arising from tunneling
between the left �L� and right �R� sides can be written
as [8]

FJ � 2Re
X

m

�aAL�
mzA

R
mz 1 b�AL�

mxAR
mx 1 AL�

myAR
my�� .

(2)
Here Amj is the 3 3 3 matrix order parameter, where the
first index m refers to the orientation of the Cooper pair in
spin space and the latter index j in orbital space. The z axis
is taken perpendicular to the tunneling wall. Equation (2)
is a simple generalization of FJ � 2a Re�AL�AR�, which
describes the Josephson coupling of two s-wave supercon-
ductors with order parameters AL and AR [9]. The mass
current through the wall is given by J � �2m3�h̄�≠FJ�≠f,
where f � fL 2 fR is the phase difference and m3 is the
mass of a 3He atom.

In the B phase of 3He, the order parameter has the
form Amj � D exp�if�Rmj. Here D is the amplitude,
exp�if� is a phase factor, and Rmj is a 3 3 3 rotation
matrix:

P
m RmjRmk � djk. The rotation matrices can be

parametrized by an axis n̂ and an angle u. Substituting
into (2) gives (a, b . 0),

FJ � 2
X

m

�aRL
mzR

R
mz 1 b�RL

mxRR
mx 1 RL

myRR
my�� cosf .

(3)
In deriving this expression from (2), one must pay attention
to the fact that the order parameter of the p-wave superfluid
is strongly suppressed near a wall. As a consequence the
parameters a and b in (3) are not simply related to the
coefficients a and b in (2), but otherwise the dependence
of FJ on the soft variables f and Rmj remains the same as
obtained by the simple substitution above.

Let us consider the case that the rotation matrices
on the left and right sides are the same. This gives
rise to the “zero state” with the critical current Jc �
�2m3�h̄� �a 1 2b� . 0. This state has the lowest energy
when jfj , p�2 because it corresponds to the maximum
of the expression in square brackets in (3). The situation
changes when f exceeds p�2. There, one has to look for
a minimum of the expression in the square brackets. This
corresponds to the p state, which is illustrated by the solid
© 1999 The American Physical Society
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line in Fig. 1a. The critical current Jc in (1) is negative:
Jc � 2�2m3�h̄�a if a . b and Jc � 2�2m3�h̄� �2b 2

a� otherwise.
In order to make the tunneling model realistic, we

have to consider three additional contributions to the
energy. Firstly, there is the magnetic dipole-dipole energy
Fd � 8gdD2� 1

4 1 cosu�2 [10]. In the bulk it fixes the
rotation angle u equal to u0 � arccos�2 1

4 � � 104±. This
also remains valid near the junction because both the
Josephson energy (3) and the dipole-dipole energy can
reach their minima simultaneously: the products of two
rotation matrices appearing in the former are not limited
by the fact that both matrices have a fixed rotation angle
u0. Secondly, there is a surface energy that arises from the
coupling of the dipole-dipole energy to the suppression of
the order parameter near walls [11]. It has the form

Fs � b4�n̂ ? ŝ�4 2 b2�n̂ ? ŝ�2, (4)

where ŝ is the surface normal. The lowest surface energy
is achieved when the rotation axis n̂ is perpendicular to
the wall, n̂ � 6ŝ, because b2 . 2b4 . 0. Thirdly, there
is a gradient energy associated with the spatial bending of
the rotation axis n̂. It arises because in practice all tunnel
junctions are of finite size, and other walls in the container
favor a different orientation of n̂ than may be the minimum
of the Josephson energy. We model the gradient energy
by the simple quadratic forms

FL
g � g�hL 2 hL

`�2, FR
g � g�hR 2 hR

` �2, (5)

where h is the polar angle of n̂, i.e., cosh � n̂z . hL

and hR denote the polar angles on both sides just at the

-30
-20
-10

0
10
20
30

-0.2

  0

0.2

0 π 2π

C
ur

re
nt

 [n
g/

s]
E

ne
rg

y 
[a

J]

φ
0 π 2π

φ

(a) (b)

(c) (d)

FIG. 1. The current-phase relationships and energies for the
tunneling model. The left and right panels correspond to
parallel and antiparallel n̂’s far away from the junction,
respectively. The directions near the junction are depicted
by arrows. The curves correspond to different values of the
gradient-energy parameter g: ideal p state (g � 0, solid line),
no p state (g � `, dotted line), and an intermediate case
(g � 0.245 aJ, dashed line). The parameters a � 0.2207 aJ
and b � 0.0347 aJ �1 aJ � 1 3 10218 J� are chosen to imitate
the experiment [3] at T � 0.55Tc.
junction, and we assume that the values hL
` and hR

` farther
away are either 0 or p . In the experimental case [2] the
surface energy (4) is important in fixing hL

` and hR
` , but

otherwise its contribution is so small that we can neglect
it in the following.

The current-phase relations for the tunneling model,
(3) and (5), are plotted in Fig. 1. It can be seen that
a large value of the gradient energy parameter g sup-
presses the p state. Furthermore, we find two cases
where the rotation axes n̂ far from the junction are either
parallel or antiparallel. The latter has a smaller critical
current [Jc � �2m3�h̄� �a 2

7
4b�] but a relatively more

pronounced p state. This “bistability” was theoretically
discussed in Ref. [12] and has recently been observed
experimentally [3].

Evaluation of tunneling parameters.—The experiment
[2] has a square array of apertures of diameter D �
100 nm with spacing S � 3 mm in a wall of thickness
W � 50 nm. In order to make the tunneling model
imitate the experiment, we estimate a and b by letting
all three lengths approach zero but keeping their ratios
unchanged [13]. The calculation for such “pinholes” [14]
is relatively simple once the self-consistent solution for
the order parameter near a wall is known [15]. We
assume diffuse scattering of quasiparticles at surfaces.
The tunneling form (3) is reproduced in these calculations
at temperatures T * 0.5Tc, and values of a and b can
be extracted. The parameter g can be estimated using
the bending energy of the B phase [16] and assuming
a simple form h�r� 2 h` ~ r21, where r is the radius
from the center of the aperture array, and this expression
is cut off at the radius of the array. In agreement
with experiments, we find that the p state appears at
low temperatures because a and b ~ �1 2 T�Tc�2 have
stronger temperature dependence than g ~ 1 2 T�Tc
(see Fig. 2). Moreover, the parameters a, b, and g

agree within 1 order of magnitude to those that give an
approximate best fit to the experiments (see caption of
Fig. 2). This fit reproduces also the absolute magnitude of
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FIG. 2. The current-phase relationships for parallel (a) and
antiparallel (b) n̂’s far away from the junction. The different
curves correspond to temperatures from 0.45Tc to 0.85Tc with
intervals of 0.05Tc. The parameters a and b are calculated
with the pinhole model and g is estimated as explained in
the text. However, in order to get better correspondence with
experiments, we have multiplied the estimated values by factors
7.5, 1.3, and 0.15, respectively.
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the critical current, and the same values of the parameters
are used for cases of both parallel and antiparallel n̂’s.

The tunneling model can be improved trivially by ex-
tending the pinhole calculation to the whole temperature
range 0 , T , Tc. A more ambitious project for the fu-
ture would be the self-consistent calculation for aperture
sizes on the order of the coherence length j0. In both
cases the resulting Josephson energy FJ�f, RL

mj , R
R
mj� will

no longer be of the simple form (3).
Single aperture.—The limit opposite to the tunneling

barrier is a single large aperture. There the major task is
to calculate the order parameter self-consistently. We have
done this using the Ginzburg-Landau (GL) theory of 3He.
The differential equations were solved numerically on a
grid in and around the aperture. Our calculations are more
general than the previous ones [12,17] because we use a
full three-dimensional grid. Vanishing Amj was assumed
at surfaces.

The order parameter of the p state is shown in Fig. 3.
It is plotted along the axis of a circularly symmetric
aperture. For simplicity, we have normalized the order
parameter to a unit matrix in the bulk, Amj�z � 6`� �
exp�6if�2�dmj (assuming the case of parallel n̂’s). This
is possible because for aperture sizes on the order of the
GL coherence length jGL, the dipole-dipole energy can
be neglected. The characteristic property of the p state
is the components Ayz and Azy . These are the dominant
components in the orifice, and they decay slowly towards
the bulk. They imply broken symmetry: the symmetry
group of the p branch is m0m20 compared to `

m0

20

m of the
zero branch. (Here prime denotes time-inversion.) This
sets a rather strong requirement for the calculation because
the circular symmetry of the aperture cannot be used to
simplify the computation. The current-phase relations are
summarized in Fig. 4.

We see that the occurrence of the p branch depends
sensitively on the diameter of the aperture, whereas the
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FIG. 3. The order parameter in the p state along the axis z
of the aperture. The figure corresponds to the phase difference
f � p, i.e., the order parameters far left and far right differ by
factor 21. The broken symmetry allows nonzero Ayz and Azy
which have a long tail in the bulk. These components vanish
in the zero branch. The wall is shown as shaded, W � 6jGL
and D � 10jGL.
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wall thickness is less important. For small apertures no p

branch is found. When D exceeds approximately 5jGL,
the p branch appears. In the region (b) the current-phase
relation has negative slope. Such a state can be stabilized
if the left and right sides are connected, such as in a torus
geometry. By increasing the diameter, the current-phase
relation gets a positive slope in region (c). This state is
stable also in a piston-driven flow channel. The p state is
also the absolute energy minimum at f � p in region (c).
In region (d) the p state continues to exist but it has higher
energy than the zero branch. The calculation assumes the
idealized case of flow between two infinite bulk fluids.
Any additional hydrodynamic inductance shifts upwards
at the border between regions (c) and (d) as it increases
the energy of current carrying states.

Although the p branch constitutes the absolute energy
minimum, it may be difficult to find it experimentally in a

FIG. 4. Theoretical phase diagram for the p state in a single
aperture. The current and the energy as a function of phase
difference f are shown in two cases. D is the diameter of
the aperture and W is the wall thickness. The p branch is
found in regions (b)–(d), where it is locally stable at a fixed
phase difference f � p. In regions (c) and (d) it is also
a local minimum of energy with respect to f at f � p.
In regions (b) and (c) the p state is the absolute minimum
energy state at f � p. The parameters of one aperture of
the experimental aperture array [2] are shown by the dashed
line, and the observation of the p state is marked by a cross.
The temperature dependent GL coherence length is defined by
jGL � h̄yF�

p
10 D�T�, where yF is the Fermi velocity and

D�T� is the Bardeen-Cooper-Schrieffer energy gap.



VOLUME 83, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 NOVEMBER 1999
single aperture. The reason is that whenever it is locally
stable, there always exists a locally stable zero state at
the same f. Because the order parameters of the p and
zero states differ considerably, it may be that the phase
slips take place only between two branches of the zero
state without ever finding the way to the lower energy p

state. This is what we find in the numerical calculations,
where the p state was found only if the initial Amj was
chosen close enough to the converged solution. We recall,
though, that our calculations are not meant to simulate the
correct dynamics of the phase slip.

The dimensions of one aperture in the array at Berkeley
are marked in Fig. 4. This is clearly in the region where
no p state is found. Although the Ginzburg-Landau
calculation is accurate only at temperatures near Tc, it
is unlikely that the p state could be stabilized in a
more accurate calculation at lower temperatures. This
statement is based on experience gained in previous low-
temperature calculations [18]. Thus we conclude that the
appearance of the p state in the Berkeley experiment
essentially depends on the presence of many apertures.

We have also done two-dimensional calculations that
simulate the flow through a long narrow slit. The p state
is found and its properties are qualitatively similar to those
in a circular aperture [19]. In particular, the transitions
from the zero branch to the p branch seem to be absent.
This is consistent with the fact that no p branch was
found in the experiments by Avenel and Varoquaux [1].

The p state can be interpreted so that a half-quantum
vortex has crossed the orifice. There are no free half-
quantum vortices in superfluid 3He-B, but the double-core
vortex [20] can be interpreted as a bound pair of two half-
quantum vortices [21]. Indeed, the order parameter in
Fig. 3 is very similar to that in the double-core vortex on
the axis going between the two cores [20].

Conclusion.—The p state was found to occur in both
the limits investigated above. Its mechanism is the same
in both cases: a lower coupling energy is achieved by
producing a spin-orbit rotation that heals slowly in the
bulk liquid. The Berkeley experiment [2] is somewhat an
intermediate case to the two limits studied, which makes
it evident that the p state there also arises from the same
mechanism.

The theory above provides several predictions which
can be tested experimentally. For example, the p state
depends on the linear dimension L of the aperture array
because a�g, b�g ~ L. An external magnetic field fixes
the surface orientation of n̂, and thus can be used to
suppress the p state.

Note added.—Quite recently, the p state has been
experimentally observed also in a single narrow slit [22].
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