
INDEPENDENT COMPONENT ANALYSIS FOR BINARY DATA:AN EXPERIMENTAL STUDYJohan HimbergNokia Researh CenterP.O. Box 407, 00045 NOKIA GROUPFinland Aapo Hyv�arinenNeural Networks Researh CenterHelsinki University of TehnologyP.O. 5400, 02015 HUT, FinlandABSTRACTWe onsider a mixing model where independentbinary omponents are mixed using binary OR op-erations. Using extensive simulations, we investigatewhether the model an be estimated using ordinaryumulant-based ICA algorithms. We show that themodel an indeed be estimated if the data is sparseenough. We also ompare the 3rd and 4th order umu-lants. In the no-noise and low-noise ases, the 3rd orderumulant performs better, but in the presene of strongnoise, the 4th-order umulant, somewhat surprisingly,performs better for very sparse data.1. INTRODUCTIONIndependent omponent analysis (ICA) [3, 4℄ is a sta-tistial model where the observed data is expressed asa linear transformation of latent variables that are non-gaussian and mutually independent. In the lassi ver-sion of the model, we have ontinuous-valued variablesthat are mixed linearly:x = As (1)where x = (x1; x2; :::; xn)T is the vetor of observedrandom variables, s = (s1; s2; :::; sn)T is the vetorof the independent latent variables (the \independentomponents"), and A is an unknown onstant matrix,alled the mixing matrix. The problem is then to esti-mate both the mixing matrix A and the realizations ofthe latent variables si, using observations of x alone.Exat onditions for the identi�ability of the modelwere given in [1℄; the most fundamental is that theindependent omponents si must be nongaussian [1℄.In many appliations, the multivariate data x is bi-nary or has strong binary nature, see e.g., [5, 6℄. Thelinear mixing model in (1) an then no longer be usedas is, beause the linear mixing is not restrited to bi-nary values. Below, we formulate an alternative model

with purely binary operations. The validity of the ap-pliation of ordinary ICA algorithms on suh data isnot obvious, either.One approah would be to formulate new estima-tion methods and algorithms for a purely binary mixingmodel. However, sine a lot of researh has been on-duted on ICA algorithms for ontinuous-valued data,it would be very useful if the ordinary algorithms ouldbe used on binary data. In this paper, we investigatethis possibility. This is done by simulations sine atheoretial treatment seems too diÆult. We use anordinary umulant-based ICA algorithm (FastICA) forbinary data. We show that this works suessfully ifthe data is sparse enough, i.e., most of the data valuesare zero. We also ompare the performanes of 3rd and4th order umulants (skewness and kurtosis).2. BINARY DATA MODELLet B be the set of binary numbers f0; 1g. The mixingmatrix A is an m � n matrix whose olumns, the ba-sis vetors, are binary vetors aj 2 Bm , j = 1; 2; : : : ; n.The independent soure signal vetors are s 2 Bn wheren is the number of soures, and the observed signal ve-tors are x 2 Bm where m is the number of signals. Thebasi linear ICA model 1 is replaed by the Booleanexpressionxi = n_j=1 aij ^ sj ; i = 1; 2; : : : ;m (2)where ^ is Boolean AND and _ Boolean OR.Instead of using Boolean operators Eq. 2 ould bewritten using the linear mixing model and a non-linearity,for example, x = U(As) (3)where U(r) is a unit step funtion for vetor r in Rdde�ned as U(r) = (u(r1); u(r2); : : : ; u(rd))T ;

jhimberg
© 2001, 2004  Johan Himberg and Aapo Hyvärinen. Reprinted, with permission, from Proc. Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA2001), pages 552–556, San Diego, California, 2001.



where u(ri) = � 1 if ri > 00 otherwiseFinding the soure signals will not be a trivial taskeven if the mixing matrix A is known sine the stepfuntion U in Eq. 3 is not invertible. This situationis similar to the ases of noisy data or overompletebases. Only the more diÆult task of �nding the basisvetors is disussed in this paper; the estimation of thesoure signals ould be performed by relatively simplemaximum likelihood methods as with noisy data.Intuitively, if s is sparse enough the observed sig-nals should not be very di�erent whether the data isgenerated by Eq. 1 or Eq. 3. This assumption justi�esthe following heuristis for estimating the binary ma-trix A using some algorithm for standard linear ICA:The mixing matrix is estimated assuming the linearICA model. This gives an estimate ÂL of the mixingmatrix AL for the linear problem. To obtain an esti-mate of A that is binary, we use thresholding of theinitial estimate ÂL :̂A = U(�ÂL �T) (4)The diagonal saling matrix � has elements�i = signmax(âi); wheresignmax(r) = � max(r) if jmax(r)j > jmin(r)jjmin(r)j otherwise.where max(r) and min(r) mean taking maximum andminimum element of vetor r, respetively. The matrixT ontains thresholds. Here we set its elements tij =0:5 for all i; j. 3. EXPERIMENTSNow, we perform extensive experiments to see if ourheuristi method (estimating binary ICA with ordinaryICA algorithms) might work.As mentioned above, the sparseness of the data maybe very important for the suess of the estimation.Thus, di�erent amount of sparseness both in the mixingmatrix and the soure signals are used.An important question is the hoie of the objetivefuntion for ICA estimation. There are indiations thatusing skewness instead of kurtosis might be a hoiefor doing ICA on this type of data [5℄. However, thetwo funtions have di�erent qualitative behavior, so thesituation may not be lear-ut: see Fig. 1. Here we use3rd and 4th order umulants with FastICA.Further, we investigate the e�et of noise on theestimation.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

E(x)

Absolute values of normalized skewness and kurtosis for binary data

kurtosis 

skewness 

Figure 1: Normalized kurtosis and skewness for a bi-nary variable as a funtion of the expetation of thevariable. Their behavior is learly di�erent. This im-plies that for ertain sparseness of binary data �ndingextremes of kurtosis might be more diÆult than forskewness and vie versa.3.1. Data generationThe mixing matrix A is generated randomly, but it isnot allowed to have any zero basis vetors nor pair ofidential basis vetors to prevent singularity. There-fore, andidate olumns a = (a1; a2; : : : ; am)T 2 Bmare generated one by one and heked against the ex-isting ones: A andidate that is idential to an existingone, or zero, is rejeted and a new andidate is gener-ated. The elements in a andidate vetor are generatedindependently from eah other, given the probabilitiesof zero and one. The probability pa = P (ai = 1) issame for all i = 1; 2; : : : ;m for all olumns a of themixing matrix A. The true expeted ratio for an ele-ment of A being 1, pA = E(a��) averaged over all i; j,di�ers slightly from pa due to the ondition of nonsin-gularity.The soure signal vetors are binary random ve-tors s = (s1; s2; : : : ; sn)T 2 Bn whose variables aregenerated by independent binomial distributions thathave probability psj = P (sj = 1) for j = 1; 2; : : : n.A realization of soure signals is generated by settingpsj = P (sj = 1); j = 1; : : : ; n and generating an n�Nbinary matrix S = (s(1); s(2); : : : ; s(N)) For simpliity,we set the same probability psj = ps for all j in ourtests.Eq. 2 orresponds to the basi noise-free ICA model.However, we experiment also using noise-orrupted sig-nals. The noise vetors are random binary vetorse = (e1; e2; : : : ; em)T 2 Bm whose variables are gener-ated by independent binomial distributions that have



the same probability pe = P (ei = 1) for all signalsi = 1; 2; : : : ;m. A realization of noise signals is re-ated by generating a m � N binary matrix E. Thenoise is added to the model output signals by bitwiseexlusive-or operation �. If a noise bit is 1 the orre-sponding signal bit will be ipped otherwise it remainsunhanged.A sample of noise orrupted signals x is generatedby X = X0 � E where X0 = U(AS) is the noise-freemodel output. The probability pe is set so that a givennoise level is ahieved. The noise level is measured asthe ratio between the number of \noise-on" bits in thenoise signals E and \signal-on" bits in the noise-freesignal X0: NL = 100% PNt=1Pmi=1 e(t)iPNt=1Pmj=1 x0(t)i : (5)3.2. Parameter seletionExperiments were run using 10 and 40 soures (n) forbasi (m = n), underdetermined (m < n) and overde-termined (m > n) problems where m is the numberof observed signals. The number of data samples wasalways set to N = 100m. For both ases 12 di�erentombinations of prior soure and mixing matrix den-sities ps and pa and three di�erent noise levels (NL)were used, see Tab. 1. The data was randomly gener-ated 30 times for eah parameter ombination. Thismeant altogether 6480 data sets.Table 1: Parameter ombinations for data generationn m pa ps NL10 8 0.2 0.05 010 0.3 0.10 515 0.4 0.20 250.3040 30 0.2 0.01 040 0.3 0.05 560 0.4 0.10 250.153.3. ICA algorithmThe implementation that was used in the test was theFastICA pakage [2℄. The symmetrial approah wasused. For eah data set, the algorithm was startedfrom a random initialization and iterated for maximum200 steps. This was repeated maximum �ve times ifthe algorithm did not onverge within the step limit.The algorithm was applied to eah data set using bothkurtosis and skewness as ontrast funtions.

4. RESULTSThe performane was evaluated by ounting the rela-tive amount of orretly retrieved basis vetors. Thisis marked R% = n100% where  is the number ofthe estimated basis vetors âi of Â that are unique1and idential to some olumn ai in the original A.Note that an underdetermined problem has maximumR% = 100mn%, m < n. On the other hand, it is likelythat an overdetermined problem gives higher soresthan the basi problem sine a large number of or-ret basis vetors may be found just by hane. If thealgorithm did not onverge on some test within the lim-its explained in previous setion, R% = 0 was set forthat run.The results are presented in Figs. 2(a-d). Theseshow the average performane as a funtion of the out-put signal density (sparseness), i.e., the average fre-queny of ones in the observed signals. The urves areomputed by dividing the density values into 15 binshaving the same number of samples. Sine there are 12ombinations of soure and mixing matrix densities and30 trials for eah ombination, there are 24 samples foralulating one dot on the urve. More preisely, thedots are loated at points (xi; yi) where xi is the meanof the output densities of i-th bin and yi is the meanof R% in that bin, respetively.In the noiseless ase, we see that on average, skew-ness performs better than than kurtosis between out-put signal densities 0:3 : : :0:5. Outside this region theontrast funtions seem to give similar results. Wefound that R% is only slightly lower for low noise levelNL = 5%, and the relative di�erene between skewnessand kurtosis remains the same. Aordingly, the plotfor NL = 5% has been left out for reasons of larity.However, for high noise level NL = 25% the results arelearly di�erent. Naturally, it appears that the shareof orretly retrieved basis vetors is lower in general,but interestingly, kurtosis now seems to perform better,when the output signal is very sparse.5. CONCLUSIONWe investigated the feasibility of the appliation of or-dinary ICA algorithms for purely binary data. Binarymultivariate data ome up in speial appliations, forexample, in doument retrieval [5℄. Our experimentssuggest that the basi linear ICA model an be used toform the binary basis vetors for the model desribedby Eq. 2 if the signals are sparse. The experiments sug-1The olumns of the original mixing matrix are unique, butthe same does not neessarily apply to the estimated binary mix-ing matrix.
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() NL=0%, n = 10 (d) NL=25%, n = 40Figure 2: Relative amount of orretly retrieved basis vetors vs. average density of output signals. Gray urveshow the average suess perentage R% for kurtosis as and blak for skewness, respetively. Panels (a) and (b)refer to tests with 10 soures for two di�erent noise levels (NL) and panels () and (d) for 40 soures, respetively.Eah panel is divided into three sub�gures where n shows the number of soures and m the number of observedsignals.



gest also that skewness works better as ontrast fun-tion for this kind of data on a ertain range of modeloutput density. A surprising result was that kurtosisseems to work better for very noisy and sparse data.It is presumable that one ould develop speializedalgorithms that take advantage of the binary strutureof the data and give better results in some ases. Ourresults suggest, however, that the use of well-knownICA algorithms an be extended to the purely binaryICA model when the data is sparse enough | withoutelaborating speial algorithms.6. REFERENCES[1℄ P. Comon. Independent omponent analysis|anew onept? Signal Proessing, 36:287{314, 1994.[2℄ The FastICA MATLAB pakage. Available athttp://www.is.hut.fi/projets/ia/fastia/.[3℄ A. Hyv�arinen, J. Karhunen, and E. Oja. Inde-pendent Component Analysis. Wiley Intersiene,2001.[4℄ C. Jutten and J. H�erault. Blind separation ofsoures, part I: An adaptive algorithm based onneuromimeti arhiteture. Signal Proessing, 24:1{10, 1991.[5℄ A. Kaban and M. Girolami. Clustering of text do-uments by skewness maximization. In Pro. Int.Workshop on Independent Component Analysis andBlind Signal Separation (ICA2000), pages 435{440,Helsinki, Finland, 2000.[6℄ J. M�antyj�arvi, J. Himberg, P. Korpip�a�a, andH. Mannila. Extrating the Context of a Mobile De-vie User. In Pro. of 8th IFAC/IFIP/IFORS/IEASymposium on Analysis, Design, and Evaluation ofHuman-Mahine System, 2001. To appear.




