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onsider a mixing model where independentbinary 
omponents are mixed using binary OR op-erations. Using extensive simulations, we investigatewhether the model 
an be estimated using ordinary
umulant-based ICA algorithms. We show that themodel 
an indeed be estimated if the data is sparseenough. We also 
ompare the 3rd and 4th order 
umu-lants. In the no-noise and low-noise 
ases, the 3rd order
umulant performs better, but in the presen
e of strongnoise, the 4th-order 
umulant, somewhat surprisingly,performs better for very sparse data.1. INTRODUCTIONIndependent 
omponent analysis (ICA) [3, 4℄ is a sta-tisti
al model where the observed data is expressed asa linear transformation of latent variables that are non-gaussian and mutually independent. In the 
lassi
 ver-sion of the model, we have 
ontinuous-valued variablesthat are mixed linearly:x = As (1)where x = (x1; x2; :::; xn)T is the ve
tor of observedrandom variables, s = (s1; s2; :::; sn)T is the ve
torof the independent latent variables (the \independent
omponents"), and A is an unknown 
onstant matrix,
alled the mixing matrix. The problem is then to esti-mate both the mixing matrix A and the realizations ofthe latent variables si, using observations of x alone.Exa
t 
onditions for the identi�ability of the modelwere given in [1℄; the most fundamental is that theindependent 
omponents si must be nongaussian [1℄.In many appli
ations, the multivariate data x is bi-nary or has strong binary nature, see e.g., [5, 6℄. Thelinear mixing model in (1) 
an then no longer be usedas is, be
ause the linear mixing is not restri
ted to bi-nary values. Below, we formulate an alternative model

with purely binary operations. The validity of the ap-pli
ation of ordinary ICA algorithms on su
h data isnot obvious, either.One approa
h would be to formulate new estima-tion methods and algorithms for a purely binary mixingmodel. However, sin
e a lot of resear
h has been 
on-du
ted on ICA algorithms for 
ontinuous-valued data,it would be very useful if the ordinary algorithms 
ouldbe used on binary data. In this paper, we investigatethis possibility. This is done by simulations sin
e atheoreti
al treatment seems too diÆ
ult. We use anordinary 
umulant-based ICA algorithm (FastICA) forbinary data. We show that this works su

essfully ifthe data is sparse enough, i.e., most of the data valuesare zero. We also 
ompare the performan
es of 3rd and4th order 
umulants (skewness and kurtosis).2. BINARY DATA MODELLet B be the set of binary numbers f0; 1g. The mixingmatrix A is an m � n matrix whose 
olumns, the ba-sis ve
tors, are binary ve
tors aj 2 Bm , j = 1; 2; : : : ; n.The independent sour
e signal ve
tors are s 2 Bn wheren is the number of sour
es, and the observed signal ve
-tors are x 2 Bm where m is the number of signals. Thebasi
 linear ICA model 1 is repla
ed by the Booleanexpressionxi = n_j=1 aij ^ sj ; i = 1; 2; : : : ;m (2)where ^ is Boolean AND and _ Boolean OR.Instead of using Boolean operators Eq. 2 
ould bewritten using the linear mixing model and a non-linearity,for example, x = U(As) (3)where U(r) is a unit step fun
tion for ve
tor r in Rdde�ned as U(r) = (u(r1); u(r2); : : : ; u(rd))T ;
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where u(ri) = � 1 if ri > 00 otherwiseFinding the sour
e signals will not be a trivial taskeven if the mixing matrix A is known sin
e the stepfun
tion U in Eq. 3 is not invertible. This situationis similar to the 
ases of noisy data or over
ompletebases. Only the more diÆ
ult task of �nding the basisve
tors is dis
ussed in this paper; the estimation of thesour
e signals 
ould be performed by relatively simplemaximum likelihood methods as with noisy data.Intuitively, if s is sparse enough the observed sig-nals should not be very di�erent whether the data isgenerated by Eq. 1 or Eq. 3. This assumption justi�esthe following heuristi
s for estimating the binary ma-trix A using some algorithm for standard linear ICA:The mixing matrix is estimated assuming the linearICA model. This gives an estimate ÂL of the mixingmatrix AL for the linear problem. To obtain an esti-mate of A that is binary, we use thresholding of theinitial estimate ÂL :̂A = U(�ÂL �T) (4)The diagonal s
aling matrix � has elements�i = signmax(âi); wheresignmax(r) = � max(r) if jmax(r)j > jmin(r)jjmin(r)j otherwise.where max(r) and min(r) mean taking maximum andminimum element of ve
tor r, respe
tively. The matrixT 
ontains thresholds. Here we set its elements tij =0:5 for all i; j. 3. EXPERIMENTSNow, we perform extensive experiments to see if ourheuristi
 method (estimating binary ICA with ordinaryICA algorithms) might work.As mentioned above, the sparseness of the data maybe very important for the su

ess of the estimation.Thus, di�erent amount of sparseness both in the mixingmatrix and the sour
e signals are used.An important question is the 
hoi
e of the obje
tivefun
tion for ICA estimation. There are indi
ations thatusing skewness instead of kurtosis might be a 
hoi
efor doing ICA on this type of data [5℄. However, thetwo fun
tions have di�erent qualitative behavior, so thesituation may not be 
lear-
ut: see Fig. 1. Here we use3rd and 4th order 
umulants with FastICA.Further, we investigate the e�e
t of noise on theestimation.
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Figure 1: Normalized kurtosis and skewness for a bi-nary variable as a fun
tion of the expe
tation of thevariable. Their behavior is 
learly di�erent. This im-plies that for 
ertain sparseness of binary data �ndingextremes of kurtosis might be more diÆ
ult than forskewness and vi
e versa.3.1. Data generationThe mixing matrix A is generated randomly, but it isnot allowed to have any zero basis ve
tors nor pair ofidenti
al basis ve
tors to prevent singularity. There-fore, 
andidate 
olumns a = (a1; a2; : : : ; am)T 2 Bmare generated one by one and 
he
ked against the ex-isting ones: A 
andidate that is identi
al to an existingone, or zero, is reje
ted and a new 
andidate is gener-ated. The elements in a 
andidate ve
tor are generatedindependently from ea
h other, given the probabilitiesof zero and one. The probability pa = P (ai = 1) issame for all i = 1; 2; : : : ;m for all 
olumns a of themixing matrix A. The true expe
ted ratio for an ele-ment of A being 1, pA = E(a��) averaged over all i; j,di�ers slightly from pa due to the 
ondition of nonsin-gularity.The sour
e signal ve
tors are binary random ve
-tors s = (s1; s2; : : : ; sn)T 2 Bn whose variables aregenerated by independent binomial distributions thathave probability psj = P (sj = 1) for j = 1; 2; : : : n.A realization of sour
e signals is generated by settingpsj = P (sj = 1); j = 1; : : : ; n and generating an n�Nbinary matrix S = (s(1); s(2); : : : ; s(N)) For simpli
ity,we set the same probability psj = ps for all j in ourtests.Eq. 2 
orresponds to the basi
 noise-free ICA model.However, we experiment also using noise-
orrupted sig-nals. The noise ve
tors are random binary ve
torse = (e1; e2; : : : ; em)T 2 Bm whose variables are gener-ated by independent binomial distributions that have



the same probability pe = P (ei = 1) for all signalsi = 1; 2; : : : ;m. A realization of noise signals is 
re-ated by generating a m � N binary matrix E. Thenoise is added to the model output signals by bitwiseex
lusive-or operation �. If a noise bit is 1 the 
orre-sponding signal bit will be 
ipped otherwise it remainsun
hanged.A sample of noise 
orrupted signals x is generatedby X = X0 � E where X0 = U(AS) is the noise-freemodel output. The probability pe is set so that a givennoise level is a
hieved. The noise level is measured asthe ratio between the number of \noise-on" bits in thenoise signals E and \signal-on" bits in the noise-freesignal X0: NL = 100% PNt=1Pmi=1 e(t)iPNt=1Pmj=1 x0(t)i : (5)3.2. Parameter sele
tionExperiments were run using 10 and 40 sour
es (n) forbasi
 (m = n), underdetermined (m < n) and overde-termined (m > n) problems where m is the numberof observed signals. The number of data samples wasalways set to N = 100m. For both 
ases 12 di�erent
ombinations of prior sour
e and mixing matrix den-sities ps and pa and three di�erent noise levels (NL)were used, see Tab. 1. The data was randomly gener-ated 30 times for ea
h parameter 
ombination. Thismeant altogether 6480 data sets.Table 1: Parameter 
ombinations for data generationn m pa ps NL10 8 0.2 0.05 010 0.3 0.10 515 0.4 0.20 250.3040 30 0.2 0.01 040 0.3 0.05 560 0.4 0.10 250.153.3. ICA algorithmThe implementation that was used in the test was theFastICA pa
kage [2℄. The symmetri
al approa
h wasused. For ea
h data set, the algorithm was startedfrom a random initialization and iterated for maximum200 steps. This was repeated maximum �ve times ifthe algorithm did not 
onverge within the step limit.The algorithm was applied to ea
h data set using bothkurtosis and skewness as 
ontrast fun
tions.

4. RESULTSThe performan
e was evaluated by 
ounting the rela-tive amount of 
orre
tly retrieved basis ve
tors. Thisis marked R% = 
n100% where 
 is the number ofthe estimated basis ve
tors âi of Â that are unique1and identi
al to some 
olumn ai in the original A.Note that an underdetermined problem has maximumR% = 100mn%, m < n. On the other hand, it is likelythat an overdetermined problem gives higher s
oresthan the basi
 problem sin
e a large number of 
or-re
t basis ve
tors may be found just by 
han
e. If thealgorithm did not 
onverge on some test within the lim-its explained in previous se
tion, R% = 0 was set forthat run.The results are presented in Figs. 2(a-d). Theseshow the average performan
e as a fun
tion of the out-put signal density (sparseness), i.e., the average fre-quen
y of ones in the observed signals. The 
urves are
omputed by dividing the density values into 15 binshaving the same number of samples. Sin
e there are 12
ombinations of sour
e and mixing matrix densities and30 trials for ea
h 
ombination, there are 24 samples for
al
ulating one dot on the 
urve. More pre
isely, thedots are lo
ated at points (xi; yi) where xi is the meanof the output densities of i-th bin and yi is the meanof R% in that bin, respe
tively.In the noiseless 
ase, we see that on average, skew-ness performs better than than kurtosis between out-put signal densities 0:3 : : :0:5. Outside this region the
ontrast fun
tions seem to give similar results. Wefound that R% is only slightly lower for low noise levelNL = 5%, and the relative di�eren
e between skewnessand kurtosis remains the same. A

ordingly, the plotfor NL = 5% has been left out for reasons of 
larity.However, for high noise level NL = 25% the results are
learly di�erent. Naturally, it appears that the shareof 
orre
tly retrieved basis ve
tors is lower in general,but interestingly, kurtosis now seems to perform better,when the output signal is very sparse.5. CONCLUSIONWe investigated the feasibility of the appli
ation of or-dinary ICA algorithms for purely binary data. Binarymultivariate data 
ome up in spe
ial appli
ations, forexample, in do
ument retrieval [5℄. Our experimentssuggest that the basi
 linear ICA model 
an be used toform the binary basis ve
tors for the model des
ribedby Eq. 2 if the signals are sparse. The experiments sug-1The 
olumns of the original mixing matrix are unique, butthe same does not ne
essarily apply to the estimated binary mix-ing matrix.
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(
) NL=0%, n = 10 (d) NL=25%, n = 40Figure 2: Relative amount of 
orre
tly retrieved basis ve
tors vs. average density of output signals. Gray 
urveshow the average su

ess per
entage R% for kurtosis as and bla
k for skewness, respe
tively. Panels (a) and (b)refer to tests with 10 sour
es for two di�erent noise levels (NL) and panels (
) and (d) for 40 sour
es, respe
tively.Ea
h panel is divided into three sub�gures where n shows the number of sour
es and m the number of observedsignals.



gest also that skewness works better as 
ontrast fun
-tion for this kind of data on a 
ertain range of modeloutput density. A surprising result was that kurtosisseems to work better for very noisy and sparse data.It is presumable that one 
ould develop spe
ializedalgorithms that take advantage of the binary stru
tureof the data and give better results in some 
ases. Ourresults suggest, however, that the use of well-knownICA algorithms 
an be extended to the purely binaryICA model when the data is sparse enough | withoutelaborating spe
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