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ABSTRACT

We consider a mixing model where independent
binary components are mixed using binary OR op-
erations. Using extensive simulations, we investigate
whether the model can be estimated using ordinary
cumulant-based ICA algorithms. We show that the
model can indeed be estimated if the data is sparse
enough. We also compare the 3rd and 4th order cumu-
lants. In the no-noise and low-noise cases, the 3rd order
cumulant performs better, but in the presence of strong
noise, the 4th-order cumulant, somewhat surprisingly,
performs better for very sparse data.

1. INTRODUCTION

Independent component analysis (ICA) [3, 4] is a sta-
tistical model where the observed data is expressed as
a linear transformation of latent variables that are non-
gaussian and mutually independent. In the classic ver-
sion of the model, we have continuous-valued variables
that are mixed linearly:

x = As (1)

where x = (21, %9,...,m,)7 is the vector of observed
random variables, s = (s;,82,...,5,)7 is the vector
of the independent latent variables (the “independent
components”), and A is an unknown constant matrix,
called the mixing matrix. The problem is then to esti-
mate both the mixing matrix A and the realizations of
the latent variables s;, using observations of x alone.
Exact conditions for the identifiability of the model
were given in [1]; the most fundamental is that the
independent components s; must be nongaussian [1].
In many applications, the multivariate data x is bi-
nary or has strong binary nature, see e.g., [5, 6]. The
linear mixing model in (1) can then no longer be used
as is, because the linear mixing is not restricted to bi-
nary values. Below, we formulate an alternative model
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with purely binary operations. The validity of the ap-
plication of ordinary ICA algorithms on such data is
not obvious, either.

One approach would be to formulate new estima-
tion methods and algorithms for a purely binary mixing
model. However, since a lot of research has been con-
ducted on ICA algorithms for continuous-valued data,
it would be very useful if the ordinary algorithms could
be used on binary data. In this paper, we investigate
this possibility. This is done by simulations since a
theoretical treatment seems too difficult. We use an
ordinary cumulant-based ICA algorithm (FastICA) for
binary data. We show that this works successfully if
the data is sparse enough, i.e., most of the data values
are zero. We also compare the performances of 3rd and
4th order cumulants (skewness and kurtosis).

2. BINARY DATA MODEL

Let B be the set of binary numbers {0,1}. The mixing
matrix A is an m X n matrix whose columns, the ba-
sis vectors, are binary vectors a; € B™, j =1,2,...,n.
The independent source signal vectors are s € B" where
n is the number of sources, and the observed signal vec-
tors are x € B™ where m is the number of signals. The
basic linear ICA model 1 is replaced by the Boolean
expression

n
wi:\/aij/\s_i7 1=1,2,...,m (2)
Jj=1

where A is Boolean AND and VvV Boolean OR.

Instead of using Boolean operators Eq. 2 could be
written using the linear mixing model and a non-linearity,
for example,

x = U(As) (3)

where U(r) is a unit step function for vector r in R?
defined as

U(r) = (u(r),u(ra), . .. 7u(rd))T,
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1 ifr; >0

where u(r;) = { 0 otherwise

Finding the source signals will not be a trivial task
even if the mixing matrix A is known since the step
function U in Eq. 3 is not invertible. This situation
is similar to the cases of noisy data or overcomplete
bases. Only the more difficult task of finding the basis
vectors is discussed in this paper; the estimation of the
source signals could be performed by relatively simple
maximum likelihood methods as with noisy data.

Intuitively, if s is sparse enough the observed sig-
nals should not be very different whether the data is
generated by Eq. 1 or Eq. 3. This assumption justifies
the following heuristics for estimating the binary ma-
trix A using some algorithm for standard linear ICA:
The mixing matrix is estimated assuming the linear
ICA model. This gives an estimate Ay of the mixing
matrix Ay, for the linear problem. To obtain an esti-
mate of A that is binary, we use thresholding of the
initial estimate AL:

A=U(AA,-T) (4)
The diagonal scaling matrix A has elements

A; = signmax(a;), where

max(r)
| min(r)]

if | max(r)| > | min(r)|
otherwise.

signmax(r) = {

where max(r) and min(r) mean taking maximum and
minimum element, of vector r, respectively. The matrix
T contains thresholds. Here we set its elements #;; =
0.5 for all i, j.

3. EXPERIMENTS

Now, we perform extensive experiments to see if our
heuristic method (estimating binary ICA with ordinary
ICA algorithms) might work.

As mentioned above, the sparseness of the data may
be very important for the success of the estimation.
Thus, different amount of sparseness both in the mixing
matrix and the source signals are used.

An important question is the choice of the objective
function for ICA estimation. There are indications that
using skewness instead of kurtosis might be a choice
for doing ICA on this type of data [5]. However, the
two functions have different qualitative behavior, so the
situation may not be clear-cut: see Fig. 1. Here we use
3rd and 4th order cumulants with FastICA.

Further, we investigate the effect of noise on the
estimation.
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Figure 1: Normalized kurtosis and skewness for a bi-
nary variable as a function of the expectation of the
variable. Their behavior is clearly different. This im-
plies that for certain sparseness of binary data finding
extremes of kurtosis might be more difficult than for
skewness and vice versa.

3.1. Data generation

The mixing matrix A is generated randomly, but it is
not allowed to have any zero basis vectors nor pair of
identical basis vectors to prevent singularity. There-
fore, candidate columns a = (ay,as,...,a,)’ € B™
are generated one by one and checked against the ex-
isting ones: A candidate that is identical to an existing
one, or zero, is rejected and a new candidate is gener-
ated. The elements in a candidate vector are generated
independently from each other, given the probabilities
of zero and one. The probability p, = P(a; = 1) is
same for all i = 1,2,...,m for all columns a of the
mixing matrix A. The true expected ratio for an ele-
ment of A being 1, pa = E(a..) averaged over all i, j,
differs slightly from p, due to the condition of nonsin-
gularity.

The source signal vectors are binary random vec-
tors s = (s1,89,...,5,)7 € B" whose variables are
generated by independent binomial distributions that
have probability p;; = P(s; = 1) for j = 1,2,...n.
A realization of source signals is generated by setting
psj = P(sj =1),j =1,...,n and generating an n x N
binary matrix S = (s(1),s(2),...,s(N)) For simplicity,
we set the same probability ps; = p, for all j in our
tests.

Eq. 2 corresponds to the basic noise-free ICA model.
However, we experiment also using noise-corrupted sig-
nals. The noise vectors are random binary vectors
e = (er,ez,...,e,)" € B™ whose variables are gener-
ated by independent binomial distributions that have



the same probability p. = P(e; = 1) for all signals
i =1,2,...,m. A realization of noise signals is cre-
ated by generating a m x N binary matrix E. The
noise is added to the model output signals by bitwise
exclusive-or operation @. If a noise bit is 1 the corre-
sponding signal bit will be flipped otherwise it remains
unchanged.

A sample of noise corrupted signals x is generated
by X = Xg @ E where Xg = U(AS) is the noise-free
model output. The probability p. is set so that a given
noise level is achieved. The noise level is measured as
the ratio between the number of “noise-on” bits in the
noise signals E and “signal-on” bits in the noise-free
signal Xp:
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3.2. Parameter selection

Experiments were run using 10 and 40 sources (n) for
basic (m = n), underdetermined (m < n) and overde-
termined (m > n) problems where m is the number
of observed signals. The number of data samples was
always set to N = 100m. For both cases 12 different
combinations of prior source and mixing matrix den-
sities ps and p, and three different noise levels (NL)
were used, see Tab. 1. The data was randomly gener-
ated 30 times for each parameter combination. This
meant altogether 6480 data sets.

Table 1: Parameter combinations for data generation
n|m| pa| ps | NL
10| 81]0.2|0.05 0
10 | 0.3 | 0.10 5
15104020 25

0.30
40 | 30 | 0.2 | 0.01 0
40 1 0.3 | 0.05 3
60 | 0.4 | 0.10 | 25

0.15

3.3. ICA algorithm

The implementation that was used in the test was the
FastICA package [2]. The symmetrical approach was
used. For each data set, the algorithm was started
from a random initialization and iterated for maximum
200 steps. This was repeated maximum five times if
the algorithm did not converge within the step limit.
The algorithm was applied to each data set using both
kurtosis and skewness as contrast functions.

4. RESULTS

The performance was evaluated by counting the rela-
tive amount, of correctly retrieved basis vectors. This
is marked Ry, = £100% where ¢ is the number of

the estimated basis vectors a; of A that are unique!
and identical to some column a; in the original A.
Note that an underdetermined problem has maximum
Ry, = 1007%, m < n. On the other hand, it is likely
that an overdetermined problem gives higher scores
than the basic problem since a large number of cor-
rect basis vectors may be found just by chance. If the
algorithm did not converge on some test within the lim-
its explained in previous section, Ry = 0 was set for
that run.

The results are presented in Figs. 2(a-d). These
show the average performance as a function of the out-
put signal density (sparseness), i.e., the average fre-
quency of ones in the observed signals. The curves are
computed by dividing the density values into 15 bins
having the same number of samples. Since there are 12
combinations of source and mixing matrix densities and
30 trials for each combination, there are 24 samples for
calculating one dot on the curve. More precisely, the
dots are located at points (x;,y;) where z; is the mean
of the output densities of i-th bin and y; is the mean
of Ry, in that bin, respectively.

In the noiseless case, we see that on average, skew-
ness performs better than than kurtosis between out-
put signal densities 0.3...0.5. Outside this region the
contrast functions seem to give similar results. We
found that Ry is only slightly lower for low noise level
NL = 5%, and the relative difference between skewness
and kurtosis remains the same. Accordingly, the plot
for NI = 5% has been left out for reasons of clarity.
However, for high noise level NL = 25% the results are
clearly different. Naturally, it appears that the share
of correctly retrieved basis vectors is lower in general,
but interestingly, kurtosis now seems to perform better,
when the output signal is very sparse.

5. CONCLUSION

We investigated the feasibility of the application of or-
dinary ICA algorithms for purely binary data. Binary
multivariate data come up in special applications, for
example, in document retrieval [5]. Our experiments
suggest that the basic linear ICA model can be used to
form the binary basis vectors for the model described
by Eq. 2 if the signals are sparse. The experiments sug-

IThe columns of the original mixing matrix are unique, but
the same does not necessarily apply to the estimated binary mix-
ing matrix.
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Figure 2: Relative amount of correctly retrieved basis vectors vs. average density of output signals. Gray curve
show the average success percentage Ry for kurtosis as and black for skewness, respectively. Panels (a) and (b)
refer to tests with 10 sources for two different noise levels (NL) and panels (¢) and (d) for 40 sources, respectively.
Each panel is divided into three subfigures where n shows the number of sources and m the number of observed

signals.



gest also that skewness works better as contrast func-
tion for this kind of data on a certain range of model
output density. A surprising result was that kurtosis
seems to work better for very noisy and sparse data.

It is presumable that one could develop specialized
algorithms that take advantage of the binary structure
of the data and give better results in some cases. Our
results suggest, however, that the use of well-known
ICA algorithms can be extended to the purely binary
ICA model when the data is sparse enough  without
elaborating special algorithms.
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