
Publication 7
1

1Reprinted from Neural Networks, accepted for publication, Jaakko Peltonen, Arto Klami,
and Samuel Kaski, Improved Learning of Riemannian Metrics for Exploratory Analysis, Copy-
right(2004), with permission from Elsevier.

Improved Learning of Riemannian Metrics for

Exploratory Analysis

Jaakko Peltonen a, Arto Klami a, Samuel Kaski a,b,∗

a Neural Networks Research Centre

Helsinki University of Technology

P.O. Box 5400, FIN-02015 HUT, Finland

b Department of Computer Science

P.O. Box 26, FIN-00014 University of Helsinki, Finland

This work was supported by the Academy of Finland, grant 52123.

∗ Corresponding author. Tel.: +358-9-451 8203; fax: +358-9-451 3277.

Email address: Samuel.Kaski@hut.fi (Samuel Kaski).

Preprint submitted to Elsevier Science 21 May 2004

Improved Learning of Riemannian Metrics for

Exploratory Analysis

Abstract

We have earlier introduced a principle for learning metrics, which shows how metric-

based methods can be made to focus on discriminative properties of data. The main

applications are in supervising unsupervised learning to model interesting variation

in data, instead of modeling all variation as plain unsupervised learning does. The

metrics are derived by approximations to an information-geometric formulation.

In this paper we review the theory, introduce better approximations to the dis-

tances, and show how to apply them in two different kinds of unsupervised methods:

prototype-based and pairwise-distance based. The two examples are self-organizing

maps and multidimensional scaling (Sammon’s mapping).

Key words: Information geometry, information visualization, learning metrics,

multidimensional scaling, self-organizing map

Preprint submitted to Elsevier Science 21 May 2004

1 Introduction

Unsupervised learning for clustering or information visualization suffers from

the garbage in—garbage out problem. The ultimate goal is to make discov-

eries in data, that is, to find new things without specifying them in advance.

The problem is that unsupervised learning cannot distinguish relevant varia-

tion from irrelevant variation in data. Structured noise becomes modeled as

well as relevant structure. The problem is particularly hard in mining high-

dimensional databases, for example in bioinformatics or text mining.

Hence, all successful unsupervised learning must have been supervised im-

plicitly or explicitly. We have introduced a learning metrics principle (Kaski

et al., 2001; Kaski and Sinkkonen, 2004) to help automate some of the im-

plicit supervision for methods that are based on distance computations. Two

subproblems need to be solved: (i) how to infer what is relevant and what not,

and (ii) how to use the findings in data-analysis methods.

Supervised methods are told directly what is relevant: the task is to predict

the value of a dependent variable, and only variation relevant to the prediction

task is interesting. Relevance is learned from a set of data pairs (x, c), where x

is the primary data and c is the desired response, that is, value of the dependent

variable (auxiliary data). It has been suggested that relevance could be derived

from dependencies between such paired data (Becker and Hinton, 1992; Tishby

et al., 1999). In practice, mutual information between representations of the

data, such as clusters (Becker, 1996; Tishby et al., 1999; Friedman et al., 2001;

Sinkkonen and Kaski, 2002) or linear projections (Torkkola, 2003; Kaski and

Peltonen, 2003), and the class labels c would be maximized.

2

The question we asked was whether the relevance could be incorporated in

the metric of the data space. A distance measure that would learn to gauge

only relevant differences between data points would be generally applicable to

a wide variety of data analysis methods that are based on distance computa-

tions. The difference from standard supervised learning is that only the metric

is supervised. The ultimate task need not be prediction; in fact, the main ap-

plications for learning metrics are in exploring new things in the primary

data given the supervision. This task could be called supervised unsupervised

learning.

The learning metrics principle, reviewed in Section 3, was formulated in terms

of idealized information-geometric concepts. Practical applications require ap-

proximations, and in this paper we introduce considerably improved approxi-

mations and methods for computing the distances.

Learning of metrics has been studied by others as well. The so-called Fisher

kernels (Jaakkola and Haussler, 1999; Tsuda et al., 2002) form distance mea-

sures between data points. The goal of that work is opposite to ours, namely

to derive metrics from unsupervised generative models and use them to con-

struct distances for supervised learning. Also, although the method appears

similar to ours in that both use information geometry, the similarity is actually

only superficial. Recently, supervised global (non-Riemannian) metrics have

been optimized based on auxiliary data (Xing et al., 2003), in this case about

similarity of pairs of samples. Parametrized metrics have also been optimized

in classification tasks (Hammer and Villmann, 2002).

So far we have applied the learning metrics principle only to self-organizing

maps (Kaski et al., 2001), although the same principle has motivated dis-

3

criminative clustering (Sinkkonen and Kaski, 2002) and projection algorithms

(Kaski and Peltonen, 2003). Here we apply the metrics additionally to Sam-

mon’s mapping, a multidimensional scaling method that aims at preserving

pairwise distances between data samples. The same computational methods

are applicable to any prototype-based and mutual distance-based methods.

2 Preliminaries: from Euclidean to Riemannian metrics

We start by introducing the kind of metric the principle constructs.

The simplest metrics take for granted the original coordinates of the data

space and their scaling. The normal Euclidean metric dI between two data

points, x and y ∈ R
n, can be expressed by

d2
I
(x,y) ≡ ‖x − y‖2 = (x − y)T I(x − y) , (1)

that is, by a quadratic form with the identity matrix I.

The next more general metric is a global metric dA that re-scales the coor-

dinates or their combinations. Such a metric can be expressed by a positive

semi-definite matrix A, xTAx ≥ 0 for all x, which replaces the identity ma-

trix in Eq. (1). A positive semi-definite matrix can always be expressed by

A = STS for some S, and hence the global distance is

d2
A

(x,y) ≡ (x − y)TA(x − y) = (x − y)TSTS(x − y)

= (Sx − Sy)T (Sx − Sy) = d2
I
(x′,y′) , (2)

where x′ = Sx. Hence, the global metric is equivalent to linear feature extrac-

tion with a matrix S, followed by the standard Euclidean metric.

4

In the most general metric the matrix A depends on the location, and the

distance is

d2
A(x)(x,y) = (x − y)TA(x)(x − y) .

Since a metric has to be symmetric, that is, d(x,y) = d(y,x), this direct

definition is used only for local distances between very close-by x and y = x+

dx. The local distances are extended by defining global distances as minimal

path integrals.

The learning metrics principle constructs these most general kinds of metrics

called Riemannian metrics.

3 The learning metrics principle

3.1 Definition

We want to form a Riemannian metric that measures only relevant differences

between points of the data space. The key assumption is that the data comes in

pairs (x, c) where c indicates what is relevant. In the same way as in supervised

learning, only those changes in x that cause changes in c are assumed to be

interesting. Here x ∈ R
n and c is discrete-valued. 1

Such a metric should measure changes in the distribution of c, caused by

changes in x. When the distances between distributions are measured by the

Kullback-Leibler divergence DKL, it can be shown (Kullback, 1959) that for

1 Continuous c are possible although the computation would be more difficult.

5

a differential dx,

d2
L(x,x + dx) ≡ DKL(p(c|x)||p(c|x + dx)) = dxTJ(x)dx , (3)

where J(x) is the Fisher information matrix

J(x) = Ep(c|x)

{(

∂

∂x
log p(c|x)

)(

∂

∂x
log p(c|x)

)T }

. (4)

This is the learning metrics principle: to use such Riemannian distances dL as

a metric of the data space.

In practice the densities p(c|x) need to be estimated from a finite data set

{(x, c)}, and the minimal path integrals that extend the local metric to longer

distances need computational approximations. In this paper we present new

methods for these tasks.

3.2 Properties of the metric

Where can it be applied? The principle assumes that the auxiliary data

is well-chosen, in the sense that important changes in the primary data cor-

respond to changes in the auxiliary data. In other words, the supervision of

unsupervised learning needs to be chosen as carefully as the predicted variable

in usual regression or classification tasks.

Why not normal supervised learning? If the task is pure classification or

regression, that is, the only answer that is needed is the value of the dependent

variable c, then normal supervised learning is the right choice.

In this paper the metric is supervised but the data analysis method used in the

6

new metric need not be. If the goal is to make discoveries with unsupervised

methods, given the supervised metric, then the learning metric is the right

choice. 2

Why preserve topology? An alternative to the Riemannian metric would

be to simply use the Kullback-Leibler divergence in Eq. (3) globally, for any

two points. Alternatively, any other distributional distance measure could be

used. A lot of computation would be saved if the approximation of path inte-

grals could be skipped. However, such global distance would not preserve the

topology of the data space, which may be important in data analysis.

The relative usefulness of this global metric and the Riemannian metric de-

pends on the application. The difference will be demonstrated in Section 7.1.

Why not supervised feature extraction? A straightforward and often-

used alternative is to preprocess the data by a linear or nonlinear transforma-

tion and then use the standard Euclidean distance.

For local pairs of data points this is expressible by the Riemannian metric,

which can be shown easily. If the transformation of x is denoted by f(x), the

distance between differentially close-by points x and y = x + dx would be

d2
f
(x,y) ≡ ‖f(x) − f(y)‖2 = (x − y)TDf (x)TDf (x)(x − y) .

Here Df (x) is the Jacobian matrix evaluated at x, and the distance matrix

A(x) ≡ Df(x)TDf (x) defines the local metric.

2 The distinction is not clear-cut, however, since some supervised methods can for

instance make inferences about the relevance of input variables to classification.

7

For global distances the correspondence does not hold, and it ultimately de-

pends on the application which approach is better. The most obvious difference

is that transformed data, and hence data-analysis results, may be harder to

interpret, whereas the metric is computed of the original data variables which

may have domain-specific meaning.

4 Computation of the metrics

Two approaches to computation. There are two main approaches to

constructing practical methods for learning metrics. The first is to develop

explicit approximations to the distance dL, Eq. (3), and use them within an

algorithm.

The second approach is only mentioned briefly here. Discriminative methods

for clustering (Sinkkonen and Kaski, 2002; Kaski et al., 2003) and projection

(Kaski and Peltonen, 2003) have been constructed by selecting an objective

function whose optimization implicitly forces the solution to correspond to

learning metric distances. The connection to learning metrics is asymptotic.

Both approaches are useful. Explicit computation is generally applicable, while

implicit optimization depends on a specific objective function tailored to each

method. On the other hand, if such an objective function can be devised, the

method can be optimized in a single stage without separate learning of the

metric. In this paper we focus on explicit distance computation.

Practical approximations. In this work we take the “engineering ap-

proach” of developing general-purpose approximations: we estimate the class

8

density p(c|x), plug it into Eq. (3), and approximate global distances compu-

tationally. The ultimate test of such approximations is using them in practice;

empirical comparisons are presented in Sections 5.3 and 6.2.

4.1 Estimation of Conditional Density

The Fisher information matrix in Eq. (4) is a function of the conditional

probabilities p(c|x) which must be estimated from a finite data set {xi, ci}
N
i=1.

We have used three kinds of density estimates. Their generic form is

p̂(c|x) =

∑

k ψkcπke
−||x−θk||

2/2σ2

∑

k πke
−||x−θk||2/2σ2 , (5)

that is, a mixture of a set of components indexed by k. Here ψkc models the

conditional density of c within component k, πk the probability of the com-

ponent, and the exponentials the domain of the component. The parameters

fulfill ψkc, πk ≥ 0,
∑

c ψkc = 1 and
∑

k πk = 1.

The first two estimators were used in an earlier work (Kaski et al., 2001)

because they could be easily derived from standard estimators. Both are opti-

mized to model the joint density p(x, c), and the conditional density in Eq. (5)

is derived from the result by the Bayes rule. The first option is the Mixture

Discriminant Analysis (MDA2) (Hastie et al., 1995), where each mixture com-

ponent generates independently both the x and c. MDA2 is optimized by an

expectation maximization algorithm to maximize the likelihood
∏N
i=1 p̂(xi, ci),

and the number of components is selected by validation.

The second option is the standard Parzen nonparametric estimator. The terms

in Eq. (5) come directly from the learning data set, {xk, ck}
N
k=1, by setting

θk = xk, ψkc = δck,c,and πk = 1/N . Here δck,c is the Kronecker delta, equal

9

to zero unless ck = c, when it equals 1. These Parzen window estimates are

accurate, asymptotically consistent (see Devroye and Wagner, 1980) but com-

putationally very expensive.

The third, new option is to estimate the conditional density directly, by max-

imizing the conditional likelihood
∏N
i=1 p̂(ci|xi) of the model in Eq. (5). We

set πk = 1/N for simplicity, optimize the parameters by a conjugate gradi-

ent algorithm, and again select the number of components by validation. The

model will be called below the conditional mixture model (CMM).

For all these estimators of the form given by Eq. (5), the Fisher information

matrix becomes

J(x) =
1

σ4
Ep̂(c|x){b(x, c)b(x, c)T} (6)

where (see Kaski et al., 2001)

b(x, c) = Eξ(k|x,c;θk){θk} − Eξ(k|x;θk){θk}

ξ(k|x, c; θk) = ψkcπke
−||x−θk||2/2σ2

∑

j
ψjcπje

−||x−θj ||
2/2σ2

ξ(k|x; θk) = πke
−||x−θk||2/2σ2

∑

j
πje

−||x−θj ||
2/2σ2

. (7)

The operators E in the topmost equation above denote weighted sums where

the weights are given by ξ(k|x, c; θk) and ξ(k|x; θk) respectively. The weights

sum to 1 but in general they need not be probabilities.

4.2 Approximations to path integrals

Even though the exact form of the density or its estimate is known, in most

cases it is too complex for analytically computing the minimal path integral

10

between a pair of points x1 and x2. Hence we must approximate it.

Local distance. The least complex approximation is to use the simple local

distance definition Eq. (3) as such, for any pair of points, even if they are far

apart. This corresponds to assuming that J(x) is constant, and hence the

shortest path is a line.

The distance between two points, x1 and x2, is then

d2
1(x1,x2) = (x1 − x2)

TJ(x1)(x1 − x2) . (8)

This approximation is called the local approximation below, or the 1-point

approximation since the metric is computed at one point.

Linear piecewise distance. The local approximation works close to the

point x1 but neglects the changes in the auxiliary data farther away. The

approximation is obviously not accurate over large distances. Note that the

metric is locally at most NC−1-dimensional, where NC is the number of classes

(possible values of the auxiliary variable). 3 The distribution of auxiliary data

changes locally only along a NC−1-dimensional subspace, and distances in all

orthogonal directions are zero. Locally this effective dimensionality reduction

is the desired solution since it gets rid of the uninteresting variation, but

globally the solution is too simplified.

3 This is not specific to our estimates. It is a general property of the way condi-

tional class distributions change locally: J(x) is a sum of NC outer products vv
T

where v are gradients of the conditional class log-probabilities (times scalars). Class

probabilities sum to one, so the gradients are linearly dependent and hence J(x)

has at most NC − 1 nonzero eigenvalues.

11

A computationally manageable extension is to still assume that the shortest

path is a line but compute the distances along several points on the line.

Besides being more accurate, this makes the distance measure symmetric as

the number of computation points increases. This will be called the T-point

approximation

dT (x1,x2) =
T
∑

t=1

d1

(

x1 +
t− 1

T
d12,x1 +

t

T
d12

)

, (9)

where d12 = x2 − x1.

Graph search distance. The T -point approximation assumes the minimal

path is a straight line. The last improvement is to remove this assumption.

Given a set of points X, the pairwise distances along linear paths (computed

with the T -point method) are considered as edges of a graph, and the minimal

path between two vertices is sought. This yields

dG(x1,x2) = min
K,{x′

1,...,x
′
K}∈X

dT (x1,x
′
1)+

K−1
∑

k=1

dT (x′
k,x

′
k+1)+ dT (x′

K ,x2) . (10)

This is denoted the graph approximation. It allows both linear and piecewise

linear minimal paths; therefore the T -point distance is an upper bound to the

graph distance. Standard graph search algorithms such as Floyd’s algorithm

can be used to find the minimum. An analogous graph computation scheme has

earlier been suggested for distances computed from unsupervised generative

models (Rattray, 2000).

When should one use which approximation? In applications like the SOM,

the distances are not used as such but are compared to find the smallest

distance (although the SOM adaptation does depend on the actual distance).

In this case it is important to compute the close-by distances accurately to

12

determine which one is smallest, whereas the larger distances can be allowed

to be erroneous. In contrast, in applications that directly use the distances,

such as MDS methods, it is important to preserve all the distances.

Another important factor in choosing the approximation is the available com-

putation time. The 1-point approximation is relatively fast, the T -point ap-

proximation is linear in T , and the graph approximation takes the longest

time (O(N3) where N is the number of samples). The graph approximation

is feasible for methods where the set of points (and minimal paths) does not

change and hence the distances need to be computed only once. Methods

based on a pairwise distance matrix are such. In SOM the prototype vectors

change and distances from them need to be computed all the time. Faster

approximations are then required. In Section 7.3 we compare approximations

of varying complexity.

Table 1 summarizes how to compute the distance approximations. In the next

sections, we apply the approximations to unsupervised methods: in Section 5

the 1-point and T -point approximations will be applied to the SOM, and in

Section 6 the T -point and graph approximations to Sammon’s mapping.

5 Application I: SOM in learning metrics

The Self-Organizing Map (SOM; Kohonen, 2001) is one of the best-known

neural network algorithms. In this Section we briefly review an earlier SOM

that learns metrics (Kaski et al., 2001), present an improved version, and

empirically compare the algorithms denoted by SOM-L against classical SOM

types.

13

Table 1

How to compute the learning metrics.

(1) Learn the CMM estimator in Eq. (5) by maximizing the conditional like-

lihood L =
∑

(x,c) log p̂(c|x).

(2) Choose a or b if distances have to be computed often, and c if only once.

(a) For the 1-point approximation, compute the Fisher information ma-

trix from Eq. (6) and the distance from Eq. (8).

(b) For the T -point approximation, choose T according to computational

resources and compute Eq. (9).

(c) For the graph approximation, compute a pairwise distance matrix

by Eq. (9) and find the minimum in Eq. (10) by running Floyd’s

algorithm on the matrix.

5.1 Computing the SOM-L

Basics. The SOM is an ordered lattice of units i with attached model vectors

mi. The standard sequential variant of the SOM training algorithm iterates

two steps: winner selection and adaptation. At each iteration t the algorithm

selects a best-matching (winner) node w(t) whose model vector has the small-

est distance from the sample x(t). For the SOM-L the distances are naturally

computed in the learning metric. In an earlier work (Kaski et al., 2001) we

used the 1-point distance approximation d1, Eq. (8). The winner selection step

is then

w(t) = arg min
i
d2

1(x(t),mi(t)) . (11)

In the second step the model vectors are adapted towards the sample, in the

direction of steepest descent of the distance function. For Riemannian metrics

14

the steepest descent direction is given by the so-called natural gradient (Amari,

1998). It turns out (Kaski et al., 2001) that this yields the standard SOM

adaptation rule, i.e.,

mi(t+ 1) = mi(t) + α(t)hw(t),i(x(t) −mi(t)) , (12)

where α(t) is the learning rate and hw(t),i is the neighborhood function around

the winner. Kohonen (2001) gives instructions on choosing neighborhood func-

tions, map topologies, and learning schedules.

Improvements. For more accurate distance computation, the 1-point dis-

tance is replaced by the T -point distance Eq. (9) in the winner search. This

implies more computation since the local approximation is computed at sev-

eral points along a line, separately for each model vector. Larger values of T

yield more accurate results but take longer. To avoid excessive computation, a

small set of W winner candidates is first chosen by a faster approximation, the

1-point or Euclidean distance; in this paper we will use the former. In Section

7.3 the effect of the choice of T and W on the results is studied empirically.

For the T -point approximation the shortest path is still assumed to be linear,

so the direction of adaptation does not change. Its magnitude may, however.

In preliminary tests taking the change into account did not improve results,

so the standard rule will be used for simplicity.

5.2 How does the metric affect the SOM-L objective?

As mentioned in Section 4 there are two possible ways to apply learning

metrics—explicit computation and implicit optimization of a tailored objec-

15

tive function. In this paper we use the first approach. It would be interesting to

know whether the resulting algorithm can be interpreted in terms of the sec-

ond approach. That is, what is the objective function of unsupervised learning

methods in the new metric? Here we consider this question for the SOM-L,

with some simplifying assumptions.

The basic SOM does not perform gradient descent on an energy function,

which makes the question difficult to answer. However, Heskes has proposed a

variant of the SOM with an energy function (Heskes, 1999). In the Euclidean

metric the energy function is

E = Ep(x){min
i

∑

j

hijd
2
I
(x,mj)} (13)

where d2
I

is the squared Euclidean distance. In the learning metric, it is re-

placed by d2
L, the squared learning metric distance.

Assume that dL can be computed with the simple local form d2
L(x,mj) =

DKL(p(c|x), p(c|mj)). It can be shown (Appendix A) that optimizing the cost

function Eq. (13) is equivalent to maximizing

Ep(c,j){log p(c|mj)} (14)

where j indexes the SOM units, p(c, j) =
∫

x
p(j|x, c)p(x, c)dx is the probability

that a sample has class c and unit j is picked from its winner neighborhood,

and p(j|x, c) ∝ hw(x),j. The maximization is done over mj and the winner

assignment function w(x).

A quality measure. The above result motivates a measure for the accuracy

of the SOM results. We had earlier used a heuristic measure defined as the

16

class purity of auxiliary (test) data on the SOM lattice, given by

∑

(x,c)

log p̂(c|hw(x)) (15)

where p̂(c|hj) ≡ (
∑

(x′,c′):c′=c hj,w(x′))/(
∑

(x′,c′) hj,w(x′)) is the proportion of class

c in the neighborhood hj = {hji}i of unit j, which is here Gaussian.

We will now motivate this quality measure through the objective function

Eq. (14). We replace the generally unknown distribution p(c|mj) at the model

vectors by p̂(c|hj), the distribution of samples of class c within the lattice

neighborhood. This change alone would yield I(C, J), the mutual information

between the classes and the (soft) winner assignment. In addition, the average

Ep(c,j) is taken in the limit of zero neighborhood, to heuristically compensate

for the difference between winner selection in the standard SOM algorithm

and Heskes’ version. This finally yields Eq. (15). If p̂(c|hj) were estimated

from learning data instead of test data, the measure would further become a

conditional log-likelihood for predicting classes of test samples from the SOM

neighborhood; this would be a reasonable alternative measure.

In conclusion, although the measure was heuristically derived, the connec-

tions to log-likelihood, mutual information and the SOM-L objective make it

reasonable.

5.3 Empirical comparisons

In this section we present empirical comparisons showing that the SOM-Ls

are more informative about the auxiliary data than Euclidean SOMs, and

that SOM-L uses the auxiliary data better than a simple supervised SOM

variant. These comparisons are sanity checks aimed to show that the learning

17

metric in fact does what it promises. We additionally compare the different

approximations of learning metrics.

Test setup. Two approximations to path integrals are included: the 1-point

and T -point distances (T = W = 10). For most experiments the density is

estimated by the conditional mixture model (CMM). The main comparison

method is the classical supervised SOM, here SOM-S, where the class of the

sample is concatenated into the input vectors in a (weighted) 1-out-of-NC class

encoded form. The standard Euclidean SOM, denoted here by SOM-E, is used

as a baseline; it does not use the auxiliary data at all.

The comparisons can be divided into two sets. First the two SOM-L versions

are compared to the other methods. The choice of density estimator is next

justified by comparing SOM-Ls trained with the CMM and MDA2 estimators.

The Parzen estimator was computationally too complex, at least for these

experiments with the T -point distances. The choice of T and W is studied in

Section 7.3.

The methods are compared on four standard machine learning data sets (Table

2). A standard cross-validation procedure and paired t-tests are used to verify

the difference between the methods.

SOM-L vs. classical SOMs. The SOM-L with the T -point distance ap-

proximation is significantly better than the traditional methods, SOM-E and

SOM-S, on all four data sets (Table 3). The faster 1-point distance approxi-

mation provides good results on some of the data sets, but on some others it

is outperformed by SOM-S, and even by SOM-E on one data set.

18

Table 2

The data sets used for empirical comparisons

Data set Dimensions Classes Samples

Landsat Satellite Dataa 36 6 6435

Letter Recognition Dataa 16 26 20000

Phoneme Datab 20 13 3656

TIMIT Data from (TIMIT, 1998) 12 41 14994

a from the UCI Machine Learning Repository (Blake and Merz, 1998)

b from LVQ PAK (Kohonen et al., 1992)

Note that SOM-S outperforms SOM-E on all data sets. This gives additional

empirical justification for the performance measure Eq. (15), since the measure

can detect the intuitively clear difference between the supervised methods and

SOM-E which does not use auxiliary data.

Comparing SOM-L versions. The different methods of approximating

the learning metrics are compared in Table 4. On all data sets the combination

of the conditional mixture model and the T -point distance approximation

leads to significantly more accurate maps than any other combination. With

the rough 1-point distance approximation there is no clear difference between

the two density estimators.

In conclusion, the conditional mixture model (CMM) is the better density es-

timation method for learning metrics if the distance approximation is accurate

enough. Even with the 1-point distance approximation MDA2 is clearly worse

19

Table 3

Comparison of SOM that learns metrics (SOM-L) with supervised SOM (SOM-S)

and Euclidean SOM (SOM-E). Two distance approximations (1-point and T -point)

are used in SOM-L. The table shows p-values of paired t-tests between the row and

column methods. If an entry is present the method in that row is on the average

better than the method in that column. Entries with p < 0.01 have been underlined

for convenience.
Landsat

1-point SOM-S SOM-E

T -point 4 × 10−4 10−5 3 × 10−8

1-point - 0.04 8 × 10−5

SOM-S - - 10−4

Letter

1-point SOM-S SOM-E

T -point 6 × 10−8 10−9 < 10−10

1-point - 2 × 10−8 < 10−10

SOM-S - - < 10−10

Phoneme

SOM-S SOM-E 1-point

T -point 0.003 2 × 10−6 9 × 10−7

SOM-S - 0.008 0.001

SOM-E - - 0.20

TIMIT

SOM-S 1-point SOM-E

T -point 2 × 10−5 3 × 10−6 3 × 10−9

SOM-S - 0.02 2 × 10−5

1-point - - 0.004

on some data sets. Therefore CMM can be recommended, and it will be used

in the further tests in Section 7.

5.4 Visualizing the SOM-L

All standard SOM visualizations are applicable to SOM-L as well. In addi-

tion, the relative importance of the components (coordinates) of primary data

can be visualized on the SOM display. The relative importance of the ith

coordinate at x is (Kaski et al., 2001)

ri(x) ≡

(

d2
1(x,x + ei)

∑

j d
2
1(x,x + ej)

)1/2

=

(

eTi J(x)ei
∑

j e
T
j J(x)ej

)1/2

(16)

where d1 is the 1-point distance approximation, Eq. (8), and ei is the unit

vector with the ith element being equal to one and others zero. The relevance

20

Table 4

Comparison of density estimators and distance approximation methods for SOM-L.

The entries are p-values of paired t-tests, and values below 0.01 are underlined for

convenience. If an entry is present the method on that row is on average better. The

entries typed in boldface are exceptions; in those cases the method on that column

is better. CMM: conditional mixture model, MDA2: mixture discriminant analysis

2. The distance approximations used are 1-point and T -point.

Landsat

CMM, 1-point MDA2, 1-point MDA2, T -point

CMM, T -point 4 × 10−4 6 × 10−7 8 × 10−7

CMM, 1-point - 8 × 10−4 0.04

Letter

CMM, 1-point MDA2, 1-point MDA2, T -point

CMM, T -point 6 × 10−8 10−10 10−10

CMM, 1-point - < 10−10 < 10−10

Phoneme

CMM, 1-point MDA2, 1-point MDA2, T -point

CMM, T -point 9 × 10−7 2 × 10−8 0.003

CMM, 1-point - 0.02 10
−4

TIMIT

CMM, 1-point MDA2, 1-point MDA2, T -point

CMM, T -point 3 × 10−6 2 × 10−5 0.001

CMM, 1-point - 0.03 5 × 10
−5

computed at model vector mj will be visualized by a gray shade on top of

SOM unit j.

The Letter Recognition data is visualized in Fig. 1. One component plane

and the corresponding importance plane are shown, and simple conclusions

are drawn to explain how the visualizations could be used. The conclusions

obtained from this visualization are very simple because of the data set, but

they are intuitively clear.

21

Fig. 1 also demonstrates the difference between SOM-L and SOM-E. The map

units with the same label (chosen by majority voting) are close-by on SOM-

L, but on SOM-E some of the labels (e.g. “I” and “B”) are dispersed into a

number of locations on the map.

a b c d

A
A

A
Q

O
O

H
R

R
R

R
B

F
P

P
P

F
F

T
T

M
M

H
N

O
O

O
B

R
B

R
B

B
D

P
P

F
F

T
Y

M
M

W
N

H
O

Q
Q

G
F

B
B

B
B

P
D

F
Y

Y
T

M
M

U
N

H
O

Q
Q

G
G

S
S

B
R

D
D

D
A

J
J

M
M

N
N

N
H

Q
G

G
G

E
E

E
B

D
D

O
J

J
J

W
W

N
N

M
H

K
K

G
G

E
E

X
X

R
X

I
I

J
J

W
W

N
N

N
K

K
K

G
C

C
K

X
X

X
X

S
I

I
I

N
V

V
X

U
K

K
G

G
E

C
K

K
K

X
X

S
S

I
I

V
V

Y
S

U
U

C
C

C
E

E
K

G
L

L
I

S
S

E
E

Y
Y

Y

U
U

C
C

C
C

E
L

L
L

L
L

X
Z

Z
Z

A
A

A
L

L
G

C
C

G
O

O

U
U

H
M

N
R

Q
A

A
J

L
I

I
K

G
E

G
Q

O
O

K
K

K
Q

Q
C

G
I

J
J

I
S

I
Z

S
B

B
B

R
X

O
O

Q
G

G
E

C
I

J
J

X
Z

Z
E

S
L

S
Q

Q
X

H
X

H
H

E
X

X
B

D
E

B
S

E
X

X
B

J
G

Q
Q

U
M

M
G

G
B

B
J

I
R

D
I

D
B

B
A

X
A

B
P

M
W

M
H

H
X

Z
I

B
D

H
O

D
G

Q
O

Q
Y

J
P

N
W

N
U

K
C

I
P

B
Q

H
D

H
U

G
K

Z
F

F
P

P
F

W
U

U
U

C
F

K
N

C
M

U
V

K
K

H
E

P
F

P
F

W
U

Y
Y

Y
F

G
W

M
M

W
W

V
W

C
Y

T
T

F
F

V
V

V
T

V
Y

Fig. 1. Sample SOM-L visualizations for Letter Recognition data. (a) The compo-

nent plane showing, with gray shades, the values of one of the components (called

“height of the centroid of mass”) in the map units, and (b) the importance of the

component. The map has been computed with the T -point distance approximation

and the units have been labeled by majority voting (c). The feature has a high

importance (light shade; large contribution to the local distance) on two separate

regions of the map. One region corresponds to the letter “L” and the other to the let-

ter “T”. The component plane reveals that in “L” the mass centroid is low whereas

in “T” it is high. The majority voting on SOM-E (d) is given for comparison; the

labels are clearly more dispersed on the map compared to the SOM-L.

6 Application II: Sammon’s mapping by learning metrics

Metric multidimensional scaling (MDS) methods (see Borg and Groenen,

1997) are often used to visualize similarities of data samples; they represent

22

the data in a low-dimensional space that tries to preserve pairwise distances.

Sammon’s mapping (Sammon, Jr., 1969) is a well-known MDS method which

emphasizes preservation of small distances.

We show next how to compute a Sammon’s mapping based on learning metric

distances. As in the SOM-L, the aim is to study the primary data; the metric

only emphasizes relevant differences.

6.1 Computing the Sammon-L

Sammon’s mapping is based on the matrix of pairwise distances between data

points; there is no need to know distances between arbitrary points. There-

fore the learning metric is only needed in computing this matrix, after which

standard methods to compute the Sammon’s mapping can be applied. The

same approach works with any algorithm operating on the pairwise distance

matrix.

In principle the distance matrix could be computed with any of the distance

approximations. The simple 1-point approximation is likely to be too inaccu-

rate here but the T -point and graph approximations are suitable. Since the

distances need to be computed only once in the beginning, the graph ap-

proximation is the preferred choice. Here the data points themselves form the

vertices of the graph; the distances are then computed more accurately where

the data is dense, which is sensible.

23

6.2 Empirical comparisons

To our knowledge no “supervised” variant of Sammon’s mapping exists. The

straightforward thought of concatenating the class to data vectors as in SOM-

S would not tolerate unlabeled data. Hence we only perform a basic test to

ensure the Sammon-L finds class structure better than the standard Sammon’s

mapping that uses Euclidean distances, here denoted Sammon-E.

Test setup. The two variants of Sammon’s mapping are compared with t-

tests in a standard ten-fold cross-validation scheme. The data are described

in Table 2. The tests are similar to the SOM-L tests; the difference is that

Sammon’s mapping does not generalize to new data (aside from heuristic gen-

eralizations). Hence direct validation of a computed mapping is not possible.

However, the metric does generalize, so it can be used to compute a distance

matrix for test data. The quality of the resulting Sammon’s mapping, com-

puted for test data but in a metric computed from learning data, can then be

evaluated.

The SOM-L quality measure Eq. (15) is defined for a discrete-valued mapping

and cannot be used here. Instead, the quality of the mappings is measured

indirectly by the performance of a nonparametric leave-one-out K-nearest-

neighbor (KNN) classifier in the output space. Each sample is classified based

on K nearest samples; low error means that samples of the same class have

been mapped close-by. For each method the neighborhood sizeK was validated

from the range 1 to 100. For each distance matrix the KNN result was averaged

over 20 restarts of the Sammon’s mapping algorithm.

24

Two distance approximations, T -point (T = 10) and graph distance, are used

For Sammon-L. The latter yields better approximations but is computationally

heavier. The density is estimated with the conditional mixture model with 30

kernels; the choice was made because of its good performance in the SOM-L

tests.

Results. The resulting Sammon-L mappings were significantly more infor-

mative (t-test, p < 0.01) than Sammon-E on all data sets (Table 5). The graph

approximation further improved the results on Landsat and Letter Recogni-

tion data sets; on the other two sets the difference between the Sammon-L

variants was insignificant.

Table 5

Indirect measure of the goodness for the Sammon’s mappings. Average percentage

of correct KNN-classifications in the output space are given over cross-validation

folds for two Sammon-L variants and Sammon-E. “Graph”: Sammon-L with graph

search; “T -point”: Sammon-L without graph search. The Sammon-L variants are

both significantly better than Sammon-E on all data sets.

Data set Graph T -point Sammon-E

Landsat 88.95 87.49 82.69

Letter 59.26 56.15 14.29

Phoneme 90.77 90.48 80.38

TIMIT 40.00 39.96 30.40

The Sammon-L with the graph approximation is illustrated in Fig. 2 on Letter

Recognition data. The new metric has emphasized differences where the class

distributions change, leading to increased class separation and more distinctive

25

clustering of classes. The class structure is hardly visible in the Sammon-E

mapping shown for comparison, whereas some classes can easily be separated

in the Sammon-L.

A A AA AAAA

A

AAAAA AAAAAA

B

B

B

B

B

B

B

B

B

B

B

B

B

BC
C
C

C
C

C CC

C

CCCCC
CCC

D

D

DD

D

DDDD
D

D

D
DDDD D

D
D

D

DD

D

D

D

D

D

D

E

E

EE

E

E

E

E

E

E

E

EE

E

E
E

E

E

E

F

F

F

F

F

F

F
F

FF

F
F

F
F

F

F
F

F

F
F

G

GG
G
GG

G
G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

H

H

H
H

H
H

H

H H

H

H

H
H

H

H
H

H

H

H

I
I

I

I
I

I
I

II

I

I

I

I

I

I

I
I

I

I
I

I

I

I
J

JJJ

J

J
JJ

J

J

J JJJ

J
J

J

J

K

K
K

K

K

K
K

K

K

K
K

K

KK
K

K

K

K

LLL

L

LLLL

L

LL

L

LLLLLL

L

L

M
M

M

M

M M
M

M
M M

M
MMMMM MM

N
N

N

N

N

N

N

N

N

NN

N

N

N

N

N
N

N

N

O

O

O

O

O

O

O O

O

O
O

O

P
P

PPP PP

P

P

P

P

P
PP PPP

P

P

QQ QQ
Q

Q

Q

Q

Q

Q

Q
QQ

Q

Q

Q

Q

Q

Q
QQ

Q

Q

Q

Q

R
R

R
RR

R

R
R
R

R

R

R
R R

R

R

S
S

SS
S

S

S

S SS
S

S
S

S

S

S
S

S

S

S

S

T

T

T

T

TTTTTT

T

T

TT

U

U
U

U

U

U
U

UUU
U

U
U

U
U UU

U

UU

U

UU

UUU

U
V

V
VVVVVV
V

V

W

W

W
WW W

W

W

W
W

W
WW

W

W

W W
WWW

XX
X

X

X

X

X

X

XX

X

X
X

X

X

X

X
X

X
X

X

YY

Y

Y

Y
Y

Y

Y

Y

Y

Y

Y

Y

Y

YY

Y

Y

Z

ZZ

Z

Z

Z

Z

Z

Z Z

Z
Z
ZZ

Z

ZZ

Z

Sammon−L

A

A

A

A

A

A

A A

A

A

A

A

A

A

A

A

A

A
A

A

BB

B

B

B

B

B
B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

CC

D

D

D
D

D

D

D
D

D
D

D

D

DD

D

D

D

D

D

D

D

D

D

D

D

D
D

D

E

E
E

E

E

E
E

E

E

E

E

E

E

E

E

E

E

E
E

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

H
H

H
H

H

H

H

H
H

H

H

H

H

HH

H

H

H

H
I

I

I

I

I

I
I

I

I

I
I

I

I
I

I

I

I

I

I

I

I

I

I

J

J

J

J

J

J

J

J
J

J

J J
J

J

J

J

J

J

KK
K

K

K

K

K

K

K

KK

K

K

K

K

K

K
K

L

L

L

L

L

L

L

L
L

L

L

L

L

L L

L

L

L

L

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

N

N

N

N

N

N

N

N

N

N
N

N

N

N

N

N

N

N

N

O
O

O O

O

O

O

O

O

O

O

O

P

P

P

P

PP

P

P

P

P

P

P

P

P

P

P

P

P

P

Q

Q

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QQ

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

R

R

R

R

R

R

R

R

R

R

R

RR

R

R

R S

S

S

S
S

S

S

S

S

S

S

S

S
S S

S

S

S

S

S

S

T

T

T

T
T

T

T T

T

T

T

T
T

T

U

U

U

U

U

U
U

U

U

U

U

U

U

U

U

U

U

U
UU

U

U
U

U

U

U

U

V

V

V

V

V

V

V

V

V

V

W W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

WW

W

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

YY

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y
Y

Z

Z ZZ

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z
Z

Sammon−E

Fig. 2. The learning metric used in Sammon-L leads to clearly more separated classes

in contrast to the Sammon-E. For example, the letter “W” is grouped into a tight

cluster at the bottom of the Sammon-L mapping, while in Sammon-E it is dispersed

to a large area on the left side of the mapping. The letters are samples of capital

characters, which explains the similarity of e.g. “O” and “Q”.

7 Why is this metric useful?

In Section 3 the metric was claimed to have useful properties. In this section we

take a closer look at the two most important ones. We illustrate why topology

preservation is useful in data exploration, and study empirically how well the

metric distinguishes between relevant and irrelevant variation in data.

Finally we study the tradeoff between complexity and accuracy of the intro-

duced approximation methods for the metric. The question is how complex

approximations are needed in practice for good results.

26

7.1 Topology preservation

The learning metric is first defined locally, and the local definition is extended

by path integrals to the whole space. This has a rigorous interpretation: it is a

Riemannian metric studied for instance in the information geometry literature.

The procedure is somewhat complicated, which may bring up the question of

why not simply use the local definition globally. Distances between any two

points would be measured by the Kullback-Leibler divergence in Eq. (3), or

any other distributional distance measure. 4

Both choices are sensible but the results will be very different. In particular, the

globally defined metric would not be able to distinguish modes of multimodal

(class) distributions, simply because points having the same class distribution

would be considered identical. This tears the topology of the data space.

We argue that preserving the topology by defining the metric locally is impor-

tant for instance for identifying subcategories of the classes, and for analyzing

the structure and relationships of the classes in the primary data space.

A toy example. We illustrate the difference between the Riemannian dis-

tance and the Kullback-Leibler divergence on artificial data. The data are

uniformly distributed over a square. One of the classes (labeled “effect”) is

bimodal and the other class forms the background.

This artificial data is effectively one-dimensional by both the Kullback-Leibler

divergence and the Riemannian metric. Therefore, one-dimensional Sammon’s

4 Jensen-Shannon distance would probably be a better choice since it is symmetric.

27

mappings were computed to visualize their difference (Fig. 3).

Both mappings group the “background” into one connected area. The Kullback-

Leibler divergence does not distinguish the two “effect” clusters, since they

have identical class distributions. The mapping based on the Riemannian met-

ric, however, preserves the multimodality. Euclidean Sammon’s mapping is

included for comparison; naturally, it cannot separate the categories of the

uniformly-distributed data.

a b c d

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 3. Demonstration of the importance of topology preservation. The data (a) has

two classes: “background” (dots) and “effect” (circles). (b-d) A one-dimensional

Sammon’s mapping was computed in three different metrics to project the

two-dimensional data samples to the horizontal axis. The vertical axis shows prob-

abilities of the background (black bars) and effect (white bars) classes, estimated

within bins of fixed width. (b) Kullback-Leibler divergence. (c) Riemannian learning

metric. (d) Euclidean metric.

7.2 Ability to focus on important variation

Although the learning metric theoretically depends only on changes that affect

the auxiliary variable C, the approximations used in practical computation are

not perfect. Approximation of the distances from finite data becomes the more

difficult the more unimportant variation (noise) there is in the data. Here we

28

empirically study how increasing the amount of unimportant variation affects

the organization of SOM-L.

Test setup. To create unimportant variation in a dataset while keeping its

other properties as constant as possible, we randomly picked one of the di-

mensions (variables) of primary data and randomly permuted the values of

that dimension among the data samples. This removes statistical dependency

between the selected variable and the remaining (primary and auxiliary) vari-

ables, but otherwise preserves the data distribution. More noise is added by

repeating the procedure for more variables.

The quality measure Eq. (15) will be used to evaluate the overall quality of

the SOMs. The quality will naturally drop when more dimensions are per-

muted, for two reasons: (i) information about auxiliary data is lost simply

because fewer informative dimensions are left, and (ii) the noise may disturb

distance approximation. We are interested in (ii), and hence introduce a new

complementary measure that focuses on it.

If the unimportant dimensions do not affect the distances in the learning

metric, winner search is determined by the remaining dimensions. Therefore

the data won by each map node should have the same distribution over the

unimportant dimensions, and each model vector should converge to the same

value (the mean) along them. We can then measure the noise caused by the

unimportant dimensions by the average (Euclidean) variance of the model

vectors along them.

29

Data. Two data sets are used: Letter Recognition data (Table 2) and a new

gene expression data (Su et al., 2002). The gene data are derived from sample

pairs (x,y) of expression level vectors of human genes and corresponding (in

the sense of having similar DNA sequences) mouse genes in a set of their

respective tissues. Human expressions are regarded as primary data and mouse

tissues are used as categories of an auxiliary variable: if the expression in a

mouse tissue is high after preprocessing (over one standard deviation above

the gene-wise average), the corresponding human gene was assigned to that

category. Up to 16 dimensions were permuted for gene data (out of 42) and

up to 8 for Letter Recognition (out of 16).

Results. As expected, the performance of both SOM-L and SOM-E de-

creases when uninteresting variation (number of permuted dimensions) in-

creases. The SOM-L seems to lose performance roughly at the same rate as

SOM-E (Fig. 4), but the performance is clearly better at any given point, and

even with a few permuted dimensions the SOM-L outperforms the SOM-E

that was computed using the intact data.

The effect of unimportant variation on the approximation errors is visualized

in Fig. 5, which shows average variances for the permuted SOM-L dimensions,

relative to the variance of the same dimensions in the SOM-L of original

data. SOM-E results are again included for comparison; SOM-E variances

change because permutation removes dependencies between permuted and

non-permuted primary variables.

The SOM-L variance for permuted dimensions is close to zero, and clearly

smaller than the SOM-E variance on both sets. Therefore, the permutation

30

0 1 2 3 4 8

−12000

−9000

−6000

A
cc

ur
ac

y

Number of permuted dimensions

SOM−L
SOM−E

0 1 2 4 8 16

−5400

−5200

−5000

A
cc

ur
ac

y

Number of permuted dimensions

SOM−L
SOM−E

Fig. 4. Replacing interesting with uninteresting variation decreases the accuracy of

both SOM-L and SOM-E at a similar rate. On the Letter Recognition data (left),

even when half of the dimensions are permuted, SOM-L performs as well as the

SOM-E for the original (unpermuted) data. On the gene data (right) permuting

roughly 10 out of 42 dimensions reduces the SOM-L performance to the level of a

SOM-E for original data.

does not seem to cause significant noise for SOM-L training.

1 2 3 4 8

0

0.2

0.4

Number of permuted dimensions

R
el

at
iv

e
va

ria
nc

e

SOM−E
SOM−L

1 2 4 8 16

0

0.2

0.4

Number of permuted dimensions

R
el

at
iv

e
va

ria
nc

e

SOM−E
SOM−L

Fig. 5. Effect of irrelevant variation on SOM-L, measured by variances of model

vectors along permuted dimensions relative to variances in the original data. Solid

line: SOM-E, dashed: SOM-L.

31

7.3 Complexity vs. quality

The complexity-quality tradeoff. To apply explicit learning metrics in

practice, we need to estimate the density and approximate the distances, as

described in Section 4. Here we study the complexity-quality tradeoff, that is,

how much the accuracy improves by increasing the complexity of the compu-

tation (of the estimates and approximations). This is done in order to provide

a practical recommendation for “sufficient” complexity. The experiments also

justify the earlier heuristic choices. The density estimators were already com-

pared in Section 5.3, and here we focus on the distance approximation.

Previous choices. For the tests in Sections 5.3 and 6.2, the distance ap-

proximations were fixed. For the density estimate, the number of mixture

components was chosen by preliminary SOM-L experiments. The variance of

Gaussian components was validated separately in each cross-validation fold

by dividing the training data into learning and validation subsets. The best

variance for SOM-L training seems to be somewhat larger than the maximum

likelihood value (best density estimator), especially for SOM-Ls trained with

the 1-point approximation. Hence, good candidate variances can be picked

near the maximum likelihood value.

The tests. We studied how the complexity parameter T used for the T -point

and graph approximations affects SOM-L and Sammon-L performance.

For SOM-L we in practice must also consider the speedup parameter W . For

the fastest valueW = 1 the distance approximation equals the simpler speedup

32

approximation (here 1-point distance); the other extreme of W equal to the

number of SOM nodes implies no speedup.

We tested the effect of increasing the computational complexity on two data

sets (Landsat and Phoneme), by computing SOM-Ls and Sammon-Ls for a

range of parameter values, and measuring their goodness on a separate test

set. SOM-E, SOM-S, and Sammon-E are used as baselines.

For SOM-L the parameter σ of the CMM density estimator is validated for

each value of T and W . For SOM-S the class weight is validated. For Sammon-

L, σ and the neighborhood of the KNN-classifier (performance measure) are

validated for each value of T . For Sammon-E the KNN neighborhood is vali-

dated.

The results. Fig. 6 shows the SOM-L performances and Fig. 7 the Sammon-

L performances on the data sets. The SOM-L performance varies somewhat

but the SOM-L is better than the other methods for all values T ≥ 5, W ≥ 10.

For both SOM-L and Sammon-L the performance increases with the complex-

ity, but compared to the increase in computation time the gain is small al-

ready with quite low values. The SOM-L computation time is proportional to

TW , whereas the Sammon-L distance computation is linear in T . The values

T = W = 10 used in Section 5.3 seem sufficient with both methods and on

both data sets; performance does not increase markedly for larger values.

33

1 2 5 10 20 40

−850

−800

−750

−700

T

A
cc

ur
ac

y

W=5
W=10
W=20
W=40
SOM−S
SOM−E

1 2 5 10 20 40

−270

−230

−190

T

A
cc

ur
ac

y

W=5
W=10
W=20
W=40
SOM−S
SOM−E

Fig. 6. SOM accuracy for Landsat (left) and Phoneme (right) data as a function

of the computational complexity. The effect of the speedup parameter W is not

altogether clear, but in general the larger W work better. On the Landsat data

the SOM-L results are always better than the comparison methods (SOM-S and

SOM-E), but on the Phoneme data the least accurate approximations are not ac-

curate enough.

8 Conclusions and discussion

The learning metrics principle addresses the garbage in—garbage out problem

of unsupervised learning, by using auxiliary data to separate the important

variation from unimportant variation. Choosing auxiliary data specifies what

is important; this is often easier than hand-tuning the features.

The learning metrics share one aspect with supervised learning: both use aux-

iliary data. The difference is that here only the metric is supervised; the data

analysis task itself can be unsupervised. Note also that analyzing partially

labeled data is easy; after the metric has been estimated it applies to all data,

labeled or not.

In a sense the concept of learning metrics is complementary to so-called

34

1 2 5 10 20 40

80

85

90

T

K
N

N
 a

cc
ur

ac
y

Sammon−L, graph
Sammon−L, T−point
Sammon−E

1 2 5 10 20 40

75

80

85

90

T

K
N

N
 a

cc
ur

ac
y

Sammon−L, graph
Sammon−L, T−point
Sammon−E

Fig. 7. The KNN-classification accuracy of Sammon-L mapping increases rather

quickly with the distance parameter T on both the Landsat (left) and Phoneme

(right) data sets. The difference to Sammon-E performance is clear already with

T = 2 and using values larger than T = 5 seems unnecessary. The local approxima-

tion (T = 1) is not sufficient, as was to be expected.

semisupervised learning, where unlabeled samples are used to help in a su-

pervised task. Here, auxiliary labels are used to help in unsupervised data

analysis.

The choice of auxiliary data is important. It specifies everything that is rel-

evant, and may suppress unknown but possibly interesting properties of the

data. In a knowledge discovery task one could “regularize” the learning met-

rics by the Euclidean distance as suggested in (Kaski et al., 2001), allowing

effects that are strong enough to turn up even when considered irrelevant with

respect to the auxiliary data.

The learning metrics have a flexible Riemannian form, and are well suited

for data analysis since they do not tear the topology of the data space. Data

analysis can even provide new insights into the importance of the features.

Such metrics are also more general than those found by extracting a smaller set

35

of features. The downside is that computing the metrics analytically is usually

not possible, and approximations must make a tradeoff between quality and

computational complexity.

In this paper we presented generally applicable, practical approximations to

computing the metrics and showed that they improved the performance of

two well-known unsupervised methods, the self-organizing map and Sammon’s

mapping. We also demonstrated and studied properties of the metrics.

Based on the results the following guidelines for approximating the metrics

computationally can be given. For self-organizing maps, use the T-point ap-

proximation with speedup. For Sammon’s mappings, use either the T-point or

graph approximation, depending on computational resources. For both meth-

ods, approximate densities by the conditional mixture model (CMM).

Although the metric was applied here to only two data analysis methods, it

is more general. In particular the method of computing pairwise distances

between all data pairs for Sammon’s mapping (Section 6) is readily applicable

to a variety of methods such as other MDS methods or hierarchical clustering

algorithms.

The main unsolved theoretical question in the current approach is how to

combine the density estimation and distance approximation steps of comput-

ing the metrics, in other words, what is the optimal density estimator for a

particular distance approximation. In this paper we presented practical tools

that clearly improve data analysis methods but still leave room for further

work.

36

References

Amari, S., 1998. Natural gradient works efficiently in learning. Neural Com-

putation 10, 251–276.

Becker, S., 1996. Mutual information maximization: models of cortical self-

organization. Network: Computation in Neural Systems 7, 7–31.

Becker, S., Hinton, G. E., 1992. Self-organizing neural network that discovers

surfaces in random-dot stereograms. Nature 355, 161–163.

Blake, C. L., Merz, C. J., 1998. UCI repository of machine learning databases.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Borg, I., Groenen, P., 1997. Modern Multidimensional Scaling. Springer, New

York.

Devroye, L. P., Wagner, T. J., March 1980. Distribution-free consistency re-

sults in nonparametric discrimination and regression function estimation.

The Annals of Statistics 8 (2), 231–239.

Friedman, N., Mosenzon, O., Slonim, N., Tishby, N., 2001. Multivariate in-

formation bottleneck. In: Proc. Seventeenth Conference on Uncertainty in

Artificial Intelligence (UAI). Morgan Kaufmann Publishers, San Francisco,

CA, pp. 152–161.

Hammer, B., Villmann, T., 2002. Generalized relevance learning vector quan-

tization. Neural Networks 15, 1059–1068.

Hastie, T., Tibshirani, R., Buja, A., 1995. Flexible discriminant and mixture

models. In: Kay, J., Titterington, D. (Eds.), Neural Networks and Statistics.

Oxford University Press, Oxford.

Heskes, T., 1999. Energy functions for self-organizing maps. In: Oja, E., Kaski,

S. (Eds.), Kohonen Maps. Elsevier, Amsterdam, pp. 303–316.

Jaakkola, T. S., Haussler, D., 1999. Exploiting generative models in discrim-

37

inative classifiers. In: Kearns, M. S., Solla, S. A., Cohn, D. A. (Eds.), Ad-

vances in Neural Information Processing Systems 11. Morgan Kaufmann

Publishers, San Mateo, CA, pp. 487–493.

Kaski, S., Peltonen, J., 2003. Informative discriminant analysis. In: Pro-

ceedings of the Twentieth International Conference on Machine Learning

(ICML-2003). AAAI Press, Menlo Park, CA, pp. 329–336.

Kaski, S., Sinkkonen, J., 2004. Principle of learning metrics for data analysis.

The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video

Technology, Special Issue on Data Mining and Biomedical Applications of

Neural Networks 37, 177–188.

Kaski, S., Sinkkonen, J., Klami, A., 2003. Regularized discriminative clus-

tering. In: Molina, C., Adali, T., Larsen, J., Van Hulle, M., Douglas, S.,

Rouat, J. (Eds.), Neural Networks for Signal Processing XIII. IEEE, New

York, NY, pp. 289–298.

Kaski, S., Sinkkonen, J., Peltonen, J., 2001. Bankruptcy analysis with self-

organizing maps in learning metrics. IEEE Transactions on Neural Networks

12, 936–947.

Kohonen, T., 2001. Self-Organizing Maps, 3rd Edition. Springer, Berlin.

Kohonen, T., Kangas, J., Laaksonen, J., Torkkola, K., 1992. LVQ PAK: A pro-

gram package for the correct application of Learning Vector Quantization

algorithms. In: Proceedings of IJCNN’92, International Joint Conference on

Neural Networks. Vol. I. pp. 725–730.

Kullback, S., 1959. Information Theory and Statistics. Wiley, New York.

Rattray, M., 2000. A model-based distance for clustering. In: Proceedings of

IJCNN-2000, International Joint Conference on Neural Networks. IEEE Ser-

vice Center, Piscataway, NJ, pp. 4013–4016.

Sammon, Jr., J. W., 1969. A nonlinear mapping for data structure analysis.

38

IEEE Transactions on Computers C-18, 401–409.

Sinkkonen, J., Kaski, S., 2002. Clustering based on conditional distributions

in an auxiliary space. Neural Computation 14, 217–239.

Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire,

T., Orth, A. P., Vega, R. G., Sapinoso, L. M., Moqrich, A., Patapoutian,

A., Hampton, G. M., Schultz, P. G., Hogenesch, J. B., 2002. Large-scale

analysis of the human and mouse transcriptomes. PNAS 99, 4465–4470.

TIMIT, 1998. TIMIT. CD-ROM prototype version of the DARPA TIMIT

acoustic-phonetic speech database.

Tishby, N., Pereira, F. C., Bialek, W., 1999. The information bottleneck

method. In: 37th Annual Allerton Conference on Communication, Control,

and Computing. Urbana, Illinois, pp. 368–377.

Torkkola, K., 2003. Feature extraction by non-parametric mutual information

maximization. Journal of Machine Learning Research 3, 1415–1438.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.-R., 2002. A

new discriminative kernel from probabilistic models. Neural Computation

14, 2397–2414.

Xing, E. P., Ng, A. Y., Jordan, M. I., Russell, S., 2003. Distance metric learn-

ing, with application to clustering with side information. In: Becker, S.,

Thrun, S., Obermayer, K. (Eds.), Advances in Neural Information Process-

ing Systems 15. MIT Press, Cambridge, MA.

Appendix A: Heskes’ cost function in learning metrics

We consider two cases: one where the conditional class probabilities are known

and one where they are not. We derive a direct cost function for the first case

39

and an upper bound for the second case.

Known class probabilities. The learning metrics version of the energy

function in Eq. (13) can be rewritten as

E = Ep(x){min
i

∑

j

hijd
2
L(x,mj)} = min

w
Ep(x){

∑

j

hw(x),jd
2
L(x,mj)} (17)

where the minimum on the right is taken over all functions w(x) that output

an index of a SOM node; they are here denoted winner assignment functions.

Assuming the local distance definition (Kullback-Leibler divergence) can be

used, the function can be further rewritten as

E = min
w
Ep(x){

∑

j

hw(x),jDKL(p(c|x), p(c|mj))}

= min
w
Ep(x){

∑

j

hw(x),j

∑

c

p(c|x) log
p(c|x)

p(c|mj)
}

= C1 − max
w

Ep(x){
∑

j,c

hw(x),jp(c|x) log p(c|mj)}

= C1 − max
w

Ep(x,c){
∑

j

hw(x),j log p(c|mj)} , (18)

where we assumed a fixed neighborhood total
∑

j hw(x),j = C0 and denoted

C1 = −C0 ·Ep(x){H(C|x)} = −C0 ·H(C|X), which is constant with respect to

the map parameters (model vectors mj). Therefore minimizing E with respect

to the map parameters is equivalent to maximizing

Ep(x,c){
∑

j

hw(x),j log p(c|mj)} (19)

with respect to both the prototype vectors and the winner assignment function

w(x). Denoting p(j|x, c) = p(j|x) ≡ hw(x),j/C0 this further simplifies to

C0Ep(x,c,j){log p(c|mj)} = C0Ep(c,j){log p(c|mj)} (20)

40

where p(c, j) =
∫

x
p(j|x, c)p(x, c)dx and C0 is constant. This yields Eq. (14).

Unknown class probabilities. When the class probabilities are not known,

an upper bound for Eq. (14) can be derived as follows. The above can be

rewritten using an estimate p̂, as

Ep(c,j){log p(c|mj)} = Ep(c,j){log p̂(c|mj)} + Ep(c,j){log
p(c|mj)

p̂(c|mj)
} (21)

The first term is maximized with respect to the class estimate when p̂(c|mj) =

p(c|j), the proportion of samples having class c and assigned to j, where again

p(j|x, c) ≡ hw(x),j/C0. In that case the first term is simply −H(C|J), the

second term is −Ep(j){DKL(p(c|j), p(c|mj))}, and we may maximize the upper

bound

−H(C|J) = Ep(c,j) log p(c|mj) + Ep(j){DKL(p(c|j), p(c|mj))}

≥ Ep(c,j) log p(c|mj) . (22)

The “tightness” of the bound depends on the average Kullback-Leibler diver-

gence; it is small when Eq. (17) is small.

Notice that −H(C|J) is just a constant H(C) away from I(C, J), the mutual

information between a (soft) winner assignment and the auxiliary variable.

Maps with a high I(C, J) can therefore be called informative.

41

