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Nuclei in Cooperation

Juha Tuoriniemi and Kirsi Juntunen

Low Temperature Laboratory, Helsinki University of Technology
PO.Box 2200, FIN-02015 HUT, Finland

We analyze and discuss two distinct resonance phenomena at high nuclear
polarizations, which give independent experimental information about the ex-
change couplings, direct or indirect, between the nuclear spins in solids. In
cases of more than one isotope with a nuclear spin, there is an isotopic-
interference effect, sometimes referred to as a suppression-enhancement ef-
fect. Even in cases with just one spin species, one may observe harmonic
lines of the ordinary Larmor resonance. By analyzing the shifts and intensi-
ties of the resonance lines as functions of the nuclear polarization, one can
find the sign and magnitude of the exchange couplings. The focus of this
paper is in experiments on nuclear magnetic ordering in pure metals. We
present studies on copper, silver, rhodium, thallium, and gold, and discuss
shortly our ongoing work on lithium.
PACS numbers: 76.60.-k, 76.60.Jx, 75.30.Et, 75.10.Jm.

1. INTRODUCTION

1.1. Prologue

Nuclear magnets are the most predictable and clean systems, which
exhibit spontaneous magnetic ordering. By no means does this make the
problem of studying the ordered states trivial – not theoretically and, in
particular, not experimentally.1,2 Having a well characterized substance for
such investigations is so invaluable, that it pays to take the trouble of ex-
ploring at extremely low temperatures the very same phenomena that are
familiar from more ordinary electronic magnetism.

Nuclear spins in simple pure metals, which are otherwise magnetically
inert, are for many reasons exemplary samples for such studies. There com-
bine some of the most attractive properties of the other two distinct exten-
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sively studied classes of nuclear magnets, by which we refer to the dynam-
ically polarized nuclei in insulators2,3 and to the diverse group of hyperfine
enhanced nuclear magnets4. As in insulators, the interactions between the
nuclear spins in ordinary metals are accurately known and can be calculated
from first principles. Still, there are variations in the decisive characteristics
among even the simplest metals to justify experiments on different materials
without just repeating the same results all over again. This is because the
pure dipolar interaction is accompanied by the indirect-exchange coupling
mediated by the conduction electrons,5 the strength of which may vary from
overwhelming, as in gold or platinum, to nearly negligible, as in lithium
or beryllium. Moreover, very interesting behavior can result when the two
interaction mechanisms are of comparable magnitude, such as in copper.6

Nuclear magnetism in several simple metals has been investigated in
our laboratory by SQUID-NMR techniques over a period of more than three
decades under the keen superintendence and discreet but purposeful influ-
ence of Olli Lounasmaa. Due to his initiative some of these metals, first
found to order antiferromagnetically in our laboratory, were subsequently
studied by neutron diffraction in two broad European collaborations.7

In this article we shall not give any general overview of this work, large
part of which was reviewed by Oja and Lounasmaa in 1997,1 but shall focus
on one particular aspect, which is, in fact, one of the foundation stones of this
research: the exchange contribution to the nuclear spin-spin interactions.

Nuclei in cooperation produce two distinct resonance phenomena, one
of which is observable at low magnetic fields only while the other one is
brought about by finite polarization of the nuclei: the double-spin effect and
the isotope effect, respectively. At high nuclear polarizations the exchange
term modifies these effects, giving an opportunity to directly measure the
relative strength of the exchange and dipolar forces. Although the indirect
exchange can be calculated from the electronic band structure, see Ref. 1
and references therein, it is rewarding to have unbiased methods to check
the validity of such cumbersome calculations.

In the following we shortly survey the earlier papers on this subject,
present a coherent algebra applying to the analysis of both phenomena, show
new detailed data on copper, reexamine some of the earlier measurements,
and finally relate the discussion to our present studies on lithium metal.

1.2. Prior Art of the Methods

In order to ascertain the requirement of knowing accurately the interac-
tions between the nuclear spins in metals, as stated at the beginning of the
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introduction, methods for checking experimentally the presumed values have
been pursued perpetually. The dipolar interaction is accurately known but
the estimates for the indirect term are less rigorous and, therefore, deserve
some special attention.

The early paper by Ekström et al.8 introduced most of the concepts
that we further develop to some extent here. The authors observed both the
double-spin effect and the isotope effect on copper, for which they deduced
a consistent magnitude of the indirect exchange.

Since then the same tools have been applied in studies of silver9,10 and
rhodium11. In silver the isotope effect was observed at both positive and
negative absolute temperatures, but the weak double-spin effect was beyond
resolution. Another manifestation of the exchange coupling was seen in the
thermalization measurements of the isotopic lines in silver.12 While rhodium
has only one stable isotope, the corresponding effect does not exist at all,
but the double-spin effect was nicely resolved at both positive and negative
absolute temperatures.11

A peculiar line splitting observed at high nuclear polarizations in thal-
lium13 has been attributed to the isotope effect14. However by applying the
appropriate parameters for thallium to the expressions derived below for the
peak positions and intensities of the isotopic lines, one can show indisputably
that the proposed splitting mechanism due to the two isotopes cannot be
correct.

Currently, we are working on nuclear magnetism in lithium, but it is too
early to include any data on this metal to the present paper. Nevertheless,
the issues discussed here are ever so topical, when measurements on a new
material are commenced.

2. THE MODEL

The following considerations are based on a simple general Hamiltonian
H = HZ + Hd + HJ consisting of the Zeeman term, the dipolar term and
the exchange term





HZ = −hB0
∑

i γiI
z
i − hB⊥ei2πft ∑

i γiI
x
i

Hd = 1
2

µ0

4πh2 ∑
ij γiγj [Ii · Ij − 3(Ii · r̂ij)(Ij · r̂ij)]/r3

ij

HJ = −1
2

∑
ij Jij(Ii · Ij)

, (1)

respectively. The spins Ii with the gyromagnetic ratio γi are exposed to an
oscillatory (with the frequency f) excitation field B⊥ perpendicular to the
static magnetic field B0. The dipolar term depends on the distance between
the spins rij and the exchange is defined by the scalar couplings Jij .
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It is useful to define two quantities representing the strength of the
spin-spin couplings: the ”dipolar frequency” fs = µ0hγ2ρI, where ρ is the
number density of the spins I, and the relative exchange parameter R =∑

j JijI/(hfs). Since we allow two spin species with different gyromagnetic
ratios, γa and γb, we must keep track of the family of each of the coupled
spins and thus have in fact three dipolar frequencies fsa, fsb, and fsx with γ2

a,
γ2

b , and γaγb, respectively. In the following, however, we shall always replace
fsx by either γb

γa
fsa or by γa

γb
fsb so that only the other two will appear in the

formulations after all. Note that the indirect exchange coupling between any
pair of spins scales as Jij ∝ γiγj so that the individuality of the spin species
does not influence R.5

The equations of motion for the spin operators, e.g. İ+
i = −i[I+

i ,H]/h̄
with I+ = Ix + iIy, result in the quantum mechanical equivalents of the
Bloch equations. The full representation with all details is unnecessarily
complicated, whereby we include in the discussions only the terms relevant
for the effect under treatment in each case.

2.1. Double-Spin Effect

This effect is treated comprehensively in the papers by Ekström et al.8

and by Moyland et al.15 Nevertheless, we reproduce the basic algebra to
demonstrate that both effects can be described on the same footing. Also,
we show that it is important to acknowledge the difference in the line widths
of the two modes. Such difference can make the double-spin effect practically
unobservable, which changes crucially the conclusions about the situation in
gold15 and may be the reason for missing this effect in silver.

The single- and double-spin operators of interest are I+ =
∑

i I
+
i and

X = µ0

4πhγ2 ∑
ij 3r−3

ij γij(αij − iβij)I+
i I+

j /fd, where αij , βij , and γij are the
direction cosines of rij . The double-spin terms I+

i I+
j are scaled by the cou-

pling frequency

fd =
µ0

4π
hγ2[18

∑

l

r−3
lj γlj(αlj − iβlj)

∑

k

r−3
kl γkl(αkl − iβkl)Iz

kIz
l ]1/2, (2)

whose relevance becomes clear below, when writing down the matrix rep-
resentation for the corresponding equations of motion.8 It is of the same
order of magnitude as the dipolar frequency, fd ∼ fs, and scales for different
substances basically as γ2ρ

√
I(I + 1).8,11,15 The uncoupled modes have the

resonance frequencies
{

f0
1 = f0 + 3

2(L−D)pfs

f0
2 = 2f0 + 2(L−D + R)pfs

, (3)
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which, for polarized nuclei (p = 〈Iz〉/I), are shifted slightly from the gen-
uine Larmor or double-Larmor frequencies f0 or 2f0.8,15 Here, L = 1

3 is the
Lorentz factor, and D is the demagnetization factor of the specimen in the
direction of the static field.

All necessary ingredients can be included into a compact matrix repre-
sentation (

f1 fd

fd f2

) (
χ⊥
X

)
= f

(
χ⊥
X

)
+

(
pfs

0

)
, (4)

where the perpendicular susceptibility χ⊥(f) = µ0M⊥/B⊥ = µ0hγρ〈I+〉/B⊥
is the experimentally observed quantity proportional to the average precess-
ing spin 〈I+〉 induced by the oscillatory excitation field B⊥. Note that there
is no direct excitation component (the rightmost vector) for X, as the ex-
ternal drive for it averages to zero over the lattice sites. This is, in fact, the
reason that the double-line intensity decreases so rapidly as the function of
the magnetic field, since it is actually the precessing individual spins, which
drive the double-spin processes.

We include, somewhat phenomenologically, the line-width contributions
δ1 and δ2 to the diagonal frequencies of the coupling matrix, viz.

{
f1 = f0

1 − iδ1

f2 = f0
2 − iδ2

. (5)

The effect of these, usually overlooked, is to weaken the observability of the
second harmonic line. They derive, of course, from the very same Hamil-
tonian that couples the spins to each other, and can be estimated by the
method of moments.16,17 The second moment of the primary line is deter-
mined by the dipolar interaction alone.17 For polycrystal samples we have
at p ¿ 1

M2 =
µ2

0

4π
h2γ4 3I(I + 1)

5

∑

j

r−6
ij . (6)

The spacing sum depends to some extent on the lattice structure, but for
most practical purposes we can evaluate 3

20π

∑
j r−6

ij ≈ 0.35ρ2. After some
manipulation we obtain δ1 ≈ α(1 − p2)

√
M2, where α ∼ 1 depends on

the higher moments of the line.2 The secondary line, on the other hand, is
broadened by the exchange interaction, which appears in its second moment
as a contribution proportional to I(I +1)

∑
j J2

ij/h2.16 The line width can be
expressed roughly as δ2 ≈ δ1

√
1 + βR2 with β depending on the microscopic

details but being of the order of unity. The full analysis of the moments
of the secondary line is rather tedious16 but the simplified expression above
still reflects the most central result: an increasing difference between δ2 and
δ1 is expected when the exchange-type interaction becomes the dominant
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coupling mechanism between the spins. It is not at all granted that the
harmonic line is detectable in such situations, as we shall show below.

The united spin system responds at the coupled mode frequencies found
as the eigenvalues of the coupling matrix, viz.8

f± =
1
2
[ f2 + f1 ±

√
(f2 − f1)2 + 4f2

d ] , (7)

and the ratio of intensities, I =
∫∞
−∞ χ⊥, of the two modes is8,15

I+/I− = 4f2
d/| f+ − f− +

√
(f+ − f−)2 − 4f2

d |2 . (8)

Due to the shifts of the resonance frequencies f0
1 and f0

2 from the Larmor
and double-Larmor positions, see Eq. (3), the uncoupled lines appear to cross
at B× = 1

2(−L + D − 4R)pfs/γ, where f0
1 = f0

2 . However, at the vicinity of
the line crossing there is repulsion between the modes and the coupled lines
approach no closer than f+ − f− = 2

√
f2

d − δ2
d with each other. Here we

use δd = (δ2 − δ1)/2. If δd ≤ fd, the two modes have equal strengths at the
”anti-crossing” field, and the double-spin mode diminishes as 1/(B − B×)2

far from the crossing region. Note that above the crossing field, it is f+ that
corresponds to the double-spin mode, whereas below B× it swaps to the f−
mode. If δd > fd, the double-spin mode does not grow to equal intensity
with the Larmor line at any value of the magnetic field. Even in the case
δd ∼ fd it may be impossible to distinguish experimentally the two modes,
as they are equally strong only when they fall practically on top of each
other, and so the passing and interchange of the roles of the two modes at
B× may well go by unnoticed.

In above we did not carry along the notation for the different spin
species, because the double-spin effect is observable at such low magnetic
fields only, that the nuclear-isotope lines are usually unresolvable from each
other. In principle, for two isotopes the double-spin line should split into
three because of the three kinds of pairs, a-a, b-b, and a-b or b-a, possibly
involved in the double-spin processes.

2.2. Isotope Effect

We use similar formalism, as above, to study the mutual influence be-
tween the spins of different isotopes. Some terms in the equations of motion,
which cancel out for interacting pairs of equal spins, remain nonzero for un-
equal pairs and, therefore, the exchange interaction shows up already in the
first order of spin operators.



Nuclei in Cooperation

This problem has been treated earlier by using the classical Bloch equa-
tions8 and by using the perturbation theory in the operator formalism for
an exchange-dominated case12. We show below that the problem can be
analyzed consistently in terms of equations of motion for the spin operators.
Such treatment can extend the validity of both the Bloch approach and the
perturbation results, each of which is reproduced at the appropriate limits.

The single-spin operators for the two isotopes obey the following equa-
tions of motion:





1
2π

˙I+
a = −ifaaI

+
a − i γb

γa
fabI

+
b + iγaB⊥ei2πftIz

a

1
2π

˙I+
b = −ifbbI

+
b − iγa

γb
fbaI

+
a + iγbB⊥ei2πftIz

b

, (9)

where




faa = f0a + 3
2(L−D)pxafsa + (L−D + R)γa

γb
pxbfsb − iδaa

fbb = f0b + 3
2(L−D)pxbfsb + (L−D + R) γb

γa
pxafsa − iδbb

fab = 1
2(L−D − 2R)pxafsa + iδab

fba = 1
2(L−D − 2R)pxbfsb + iδba

. (10)

We denote Iα
n =

∑n
i Iα

i with
∑n, n = a, b running only through the repre-

sentative spin species, while B⊥ is the amplitude of the excitation field at
frequency f , orthogonal to the static field. The Larmor frequencies and the
abundances of the two isotopes are f0n and xn with n = a, b, respectively.
For simplicity, we assume pa = pb = p.

We can demonstrate, how the various terms come about, by looking at
the exchange Hamiltonian HJ = −∑

i 6=j JijIi ·Ij = −∑
i6=j Jij(Iz

i Iz
j +I+

i I−j ).
Both spin products

∑
i 6=j JijI

α
i Iβ

j must be decomposed according to the spin
families:

∑aa
i 6=j JijI

α
i Iβ

j + 1
2

∑a
i

∑b
j Jij(Iα

i Iβ
j + Iβ

i Iα
j ) +

∑bb
i6=j JijI

α
i Iβ

j . The
contributions for equal pairs cancel out, because, for example, the aver-
age 〈[∑aa

i6=j JijI
z
i Iz

j , I+
a ]〉 = 2hpxaRfsaI

+
a is exactly the opposite of the ad-

joining term 〈[∑aa
i6=j JijI

+
i I−j , I+

a ]〉 = −2hpxaRfsaI
+
a . However, the ”zz”-

cross component 〈[∑a
i

∑b
j JijI

z
i Iz

j , I+
a ]〉 = hpxbR

γa

γb
fsbI

+
a is not cancelled

by 〈[12
∑a

i

∑b
j JijI

−
i I+

j , I+
a ]〉 = −hpxaR

γb
γa

fsaI
+
b , because the precessing spin

component is that of the other spin species. The last two terms appear as
the R-factors in faa and fab. The commutators with I+

b result in the corre-
sponding terms of fbb and fba, respectively. When the Zeeman and dipole
Hamiltonians are treated similarly, we finally obtain the coupling frequencies
of Eq. (10).

The presence of the foreign spins contribute to the line widths, which
forces us to write down four different δ’s. These can be evaluated much in
a similar way as phrased above, although the full expressions become fairly
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unhandy. Some general observations can be made, though. The straight
widths δnn are constructed as follows:17 i) Equal spins contribute to the line
width principally through the dipolar coupling, simply weighted by their
corresponding abundance xn. ii) Dipolar coupling between unlike spins con-
tributes only by a factor 2

3xn. iii) The exchange between unlike spins broad-
ens the line by an additional factor ∼ xnR/

√
nn, where nn is the number of

nearest neighbors. (We assume that the exchange interaction decays rapidly
enough to justify including nearest neighbors only.) iv) The total width
squared is the sum of independent contributions squared.

Using the principles above, we obtain

δ2
aa ≈ (xaδa)2 + (xbδb)2(

4
9

+ R2/nn) (11)

and δbb for the isotope b correspondingly. δa and δb represent the single-spin
widths equivalent to those obtained from Eq. (6). The evaluation of the
”cross widths” δab and δba is basically similar resulting in

δ2
ab ≈ (xaδa)2(

1
9

+ R2/nn) (12)

and δba correspondingly.
To be consistent, also the contributions δaaI

+
a and γb

γa
δabI

+
b should be

summed up as squares, but this would result in less transparent nonlinear
equations of motion. On the basis of some numerical analysis of such nonlin-
ear cases we consider the proposed form of Eqs. (9) and (10) as an adequate
approximation to this problem. We remind, that all line-width contribu-
tions, including the single-isotope widths δn, were expressed as rather coarse
estimates leaving some space for adjustments according to actually measured
line shapes. Note that the sign of the width contribution is irrelevant when
their squares are considered. This is why the proper sign assessment for the
cross widths in Eq. (6) is opposite to the straight widths.

The linear equations of motion can be molded to the matrix represen-
tation (

faa fab

fba fbb

) (
χ⊥a

χ⊥b

)
= f

(
χ⊥a

χ⊥b

)
+

(
pxafsa

pxbfsb

)
, (13)

with the susceptibilities χ⊥n = µ0hγnxnρ〈I+
n 〉/B⊥. We find the eigenfre-

quencies, formally nearly identically to Eq. (7), as

f± =
1
2
[ faa + fbb ±

√
(faa − fbb)2 + 4fabfba ]. (14)

The term proportional to fsafsb of the product fabfba in Eq. (14) results
in increasing repulsion of the two NMR peaks as the polarization grows up.
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On the other hand, the product of the cross widths δabδba in fabfba give rise
to attractive displacement of the lines, remaining down to p = 0, consistent
with the perturbation analysis by Oja et al.12 The latter effect is important
primarily in metals with |R| > 1, such as silver or thallium, whereas in
copper with R = −0.42 we may set δab = δba = 0 without any appreciable
impairment of the results.

The equations for the line intensities become somewhat complicated,
partly because there are now source terms for both components in Eq. (13).
It is useful to find the contributions of both the separate isotopes, χ⊥a and
χ⊥b, and also of the two coupled modes χ⊥+ and χ⊥−. The superposition of
either pair, which sum up equivalently, is observed in the real measurement
and, in practice, the individual contributions may be difficult to separate
when the two modes become very close to each other.

We obtain

χ⊥a(f) =
pxafsa(f+ − faa)− pxbfsbfab

(f+ − f−)(f− − f)

−pxafsa(f− − faa)− pxbfsbfab

(f+ − f−)(f+ − f)
(15)

and, of course, a similar expression for χ⊥b with all a’s and b’s interchanged.
The first terms of χ⊥a and χ⊥b so written assimilate to χ⊥−, while the second
terms sum up to χ⊥+. Now, both spin species respond at both frequencies f+

and f−. It can be seen that one breed has a positive peak at both frequencies
but the other one has opposite polarities of the two peaks. Consequently,
there is constructive interference of the isotopes at one mode and destructive
interference at the other mode. Therefore, this phenomenon is also called
the suppression-enhancement effect. Which one of the modes, f+ or f−, is
amplified, depends on the sign and magnitude of the exchange constant R,
which is exactly the parameter of interest here.

The relative intensity can be written as

I+/I− = | F1(f+ − f−)− F2(fbb − faa) + p(xafsafba + xbfsbfab)
F1(f+ − f−) + F2(fbb − faa)− p(xafsafba + xbfsbfab)

| (16)

with {
F1 = (xafsa + xbfsb)/2
F2 = (xafsa − xbfsb)/2

. (17)

In the discussion above, we have neglected the influence of the higher
moments of the lines, which, however, may be important under some cir-
cumstances. The third order terms, M3 ∝ p(1 − p2), vanish at low and
high polarization but make the lines asymmetric at intermediate region.
The higher odd orders have the same tendency. The fourth order terms,
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M4 ∝ (1− p2)(1− ηp2), (as well as higher even orders) vanish at high polar-
ization but are influential at low p where they suppress the tails of the lines
making them often appear more like Gaussian in shape.2

3. THE METALS

We examine a number of previously published studies on several ele-
mental metals and present some new improved data on copper. In all cases
consistent results are obtained using the formalism introduced above.

3.1. Copper

Copper displays beautifully both of the effects discussed in this article.
The strength of the indirect exchange is comparable to that of the dipolar
interaction, so that its influence is easily observed at high nuclear polar-
izations. The double-spin effect shows up clearly without being smeared
by exchange broadening of the harmonic line. Two isotopes exist, 63Cu
and 65Cu with x63 = 0.69 and x65 = 0.31, with γ63 = 11.30 MHz/T and
γ65 = 12.10 MHz/T, and with I63 = I65 = 3

2 .
The most accurate experimental determination of the exchange parame-

ter R = −0.42±0.05 of Cu is based on observing the effects being discussed.8

We have produced new data on copper with an improved signal to noise ra-
tio as a side product of our ongoing studies on lithium metal, while our
lithium samples have been capsuled by copper foils cooled down together
with the actual specimens. The sample shape is different from what Ekström
et al. used and therefore the demagnetization factors differ. We estimate
D = 0.09 ± 0.01 on the basis of the dimensions of our slab-shaped sample,
which consisted of about 2 mm thick bunch of 24 long foils 50 µm each with
a width of about 8 mm. The static field was usually oriented along the
second longest side of the specimen. Some complications may arise because
the demagnetization field is not exactly uniform across the rectangular and
stripy cross section of the sample.

The specimen was cooled in a double-stage nuclear-demagnetization
cryostat18 in a similar fashion as described in Ref. 8. Typically, we polarized
the sample in 2–3 T at about 0.3 mK for 2–3 h and the demagnetization
was carried out in 10–15 min. The short polarization period ensured that
selectively the copper nuclei were polarized, as lithium has more than an
order of magnitude larger Korringa constant than copper. This was impor-
tant mainly for the measurements in low fields (double-spin effect), where
the NMR lines of the two metals overlap with each other.
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In a typical measurement after the demagnetization, the excitation fre-
quency, chosen from the range 10–150 kHz, was kept constant and the mag-
netic field was swept back and forth across the resonances, while the spin
system was warming up towards equilibrium with the lattice. One sweep
took usually about five minutes and the nuclei relaxed back to the lattice
temperature in a few hours. The polarization scale for the runs at different
frequencies could be found at equilibrium with the lattice in the respective
measuring field range. In the static fields applied, 1–13 mT, and at the lat-
tice temperatures around 0.3 mK, the equilibrium polarization was of the
order of 1%, and the NMR signals were still easily and accurately measur-
able. Any other value of polarization could then be found by comparing
the integrated area under the absorption curve of the recorded dynamic sus-
ceptibility. However, good agreement with the initial polarization estimated
on the basis of the temperature, field, and duration of the polarization and
demagnetization phases was found only at the higher measuring frequencies
(> 100 kHz), while at lower frequencies (and thus lower fields) the area of
the absorption peaks appeared to grow less than linearly with polarization.
This is not totally unexpected as the assumed simple linear relationship is
valid only in fields much greater than the local field (Bloc = 0.34 mT for cop-
per); clear deviations were observed still at few milliteslas. Consequently, in
the low-field runs the polarization had to be calculated from the estimated
initial value and the relaxation time. The lattice temperature Te, measured
by a Pt-NMR thermometer, could be checked independently by the spin-
lattice relaxation time τ1 of the copper nuclei through the Korringa relation
Te = κCuτ1. No serious discrepancies were found in any of the runs, al-
though, as expected, the relaxation speeds up somewhat at the lowest fields.

The double-spin resonance was observed very clearly at frequencies be-
tween 10–30 kHz, see Fig. 1. The data at 11 and 13 kHz display passing of
the two modes with the minimum separation of 0.23 mT, in fair agreement
with the results of Ekström et al.8 The closest separation is smaller than
mere repulsion of the lines would allow (∼ 0.30 mT), which is an indication
of a clear difference in the widths of the two modes, as pointed out already,
but not fully explained, in Ref. 8. The suggested line widths squared dif-
fer by ∆ =

√
δ2
2 − δ2

1 ≈ R
√

M2 ≈ 4 kHz, which is of proper magnitude to
account for the close passing of the two lines.

It is important to note, that the line width of the double-spin mode
seen experimentally is not the same as δ2, because the double-spin mode
can be observed only indirectly through the coupling with the single-spin
precession. In fact, the computed spectra display more or less equal line
widths for the two modes, and to explain the differences clearly observed in
the experiment, one must include some cross-coupling widths to the coupled
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Fig. 1. Measured resonance shapes of copper at f = 11, 13, and 21 kHz,
where the double-spin mode is very clear. The nuclear polarization varies
between about p = 0.04–0.6 in each run. The inset: calculated spectra at
f = 11 kHz between p = 0.05–0.75 with increments of 0.05.

equations of motion, as we did in the analysis of the isotope effect.
The computed behavior at the line crossing is shown in the inset of

Fig. 1. Qualitatively the evolution is similar to what we observe, but the
actual line shapes deviate clearly from the Lorentzian lines produced by the
linear equations.

Quantitative analysis of the intensities of the two modes is troublesome
because of the large overlap of the lines. We fitted the data with Lorentzian
shapes, where, in addition, the width was allowed to vary in a Gaussian
manner as the function of field. To be more specific, we used for fitting the
basic function

χ”(B) =
χ0A

2Γ(B)
(B −BL)2 + Γ(B)

(18)

with
Γ(B) = Γ2

Le− ln 2[(B−BG)/ΓG]2 . (19)

This way it is possible to interpolate the line shape from fully Lorentzian
(ΓG → ∞ and A = 1) to pure Gaussian (A = BL → ∞ and ΓL = 1), as
is necessary due to the changes in the measured line shapes, as the spin
system was warming up. Further, by allowing a (small) difference between
the center frequencies of the Lorentzian and Gaussian parts (BL 6= BG),
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Fig. 2. Decomposition of each first spectra of Fig. 1 to three Lorentz-
Gaussian peaks.

it is possible to reproduce asymmetric lines, which are clearly observed at
intermediate polarizations. Still, it is not possible to deduce the separate
intensities objectively due to the large number of parameters. Therefore,
we demanded, in addition, that the two lines must have an equal shape
(BL1−BG1 = BL2−BG2 and ΓL1/ΓG1 = ΓL2/ΓG2), although the positions,
widths, and amplitudes do differ. Then the low-field sides of both peaks
are fixed by the falling side at the left of the attached pair and the high
field sides by the opposite edge. This seemed to be a fair adaptation in all
cases analyzed. The physical justification for the particular fitting function
is not that essential, since its purpose was just to resemble the data with
best possible fidelity to allow accurate determination of partial areas and
center positions.

Examples of such processing are shown in Fig. 2 for the highest signals
of Fig. 1. We fitted, in fact, three peaks as one can see from the decomposi-
tions in Fig. 2. The interpretation of the extended tail, treated as the third
peak, will be refined in the context of the isotope effect, as it probably is a
reminiscent of the extinguished second isotope line mixed with the effect of
varying demagnetization factor over the cross section of the sample. At the
frequency 21 kHz, it is natural to associate this additional intensity to the
main line, so that the intensity ratio of interest is defined as Ir = I1/(I2+I3).
The situation is not as clear, when the line crossing is taking place in the
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Fig. 3. Intensity ratio of the double-spin mode and the ordinary Larmor line
as the function of the separation between the peaks, which evolves with the
decreasing nuclear polarization. The lines are theoretical with fd = 2.6 kHz.

other two cases. Fortunately, the third line has then only an insignificant
share of the total intensity, so that we chose to ignore it completely. For
the data sets at the lowest frequencies, therefore, Ir = I1/I2 or Ir = I2/I1,
whichever is less than unity. The crossing point is passed, by definition,
when I1 = I2.

The ratios of the intensities in the three measurements are displayed
in Fig. 3 An excellent reproduction of the behavior is obtained by using a
coupling frequency fd = 2.6 kHz, which is somewhat smaller than the value
suggested by Ekström et al.8 No conclusions can be made about the possible
polarization dependence of fd.

The resonance positions obtained from the fits and calculated according
to our model are shown in Fig. 4. Good agreement is found, in particular at
the higher frequency. The steepening of the change of the resonance value
of the 21 kHz primary line at the lowest polarizations is due to a remnant of
the isotope effect: above about p = 0.2 both spin species behave essentially
as those with the higher moment (enhanced line), but when approaching
p = 0, the coupling between the isotopes decreases rapidly and the effective
gyromagnetic ratio changes to the average of the isotopes weighted by the
abundances. At the lower frequency there is a clear displacement of the
primary line from the expected resonance position at low polarizations. It is
difficult to assure that this would have any deeper significance, although the
difference is somewhat larger than seems plausible to result just from fitting
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Fig. 4. Resonance positions of the primary and secondary lines at f = 11
and 21 kHz as functions of nuclear polarization.

errors.
The double-spin resonance was still resolvable at 111 kHz, see Fig. 5,

where we wanted to test if the isotope splitting of the double-spin line would
be visible. The sweep in Fig. 5 was started from 0.3 to 0.6 mT, the excitation
level was then stepped down by a factor of 10, the main peaks were scanned,
and then the sequence was repeated in the opposite order. Due to the long
sweep, there was considerable relaxation in the course of the whole episode.
The data in Fig. 5 are displayed as measured without subsequent averaging.
The signal-to-noise ratio was not good enough for definite conclusions about
any structure of the double-spin satellite.

The isotope effect was studied at four different frequencies, 151, 111, 81,
and 51 kHz, see Figs. 6 and 7, while still at 21 kHz the suppressed isotope
line probably contributed to the tail of the main peak, see Fig. 1. At 81 kHz
two measurements were made with the static field either parallel or perpen-
dicular with the sample foils in order to check the effect of grossly different
demagnetization factors, see Fig. 7. The change in the relative strengths
and the shifts of the peaks are well reproduced, but the measured spectra
are much broader than the calculated ones, presumably due to eddy-current
screening effects. At the limit p = 0 the demagnetization factor makes no
difference any more. Some broadening is seen also in Fig. 6 as the frequency
is increased. The overall behavior is in accordance with the expectations at
all frequencies, but quite interesting small quantitative deviations occur.

The experimental resonance lines were fitted according to the routines
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Fig. 5. Double-spin satellite (left) at f = 111 kHz, where the main peak
(right) already splits into the isotopic lines. The arrows indicate the expected
positions for the double flips of like nuclei of either isotope, whereas that of
the unlike pairs fits in between. Note the different vertical scales – the
double-spin mode is already about 500 times weaker than the Larmor peaks.
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Fig. 6. Measured resonances of copper at f = 51, 111, and 151 kHz with
the magnetic field parallel to the sample. The isotope effect becomes more
dominant toward lower frequencies, so that the upper isotope line is almost
extinguished at 51 kHz at high polarizations. The range p ≈ 0.1–0.6 is
covered in each panel. Not all measured spectra are shown to improve clarity.
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Fig. 7. Measured resonance shapes of copper at f = 81 kHz for two different
static field orientations. The nuclear polarization varies between about p =
0.1–0.7 in each run. The inset: calculated spectra at f = 81 kHz with p = 0.7
for different demagnetization factors between D = 0.1–0.9 with increments
of 0.2. Consecutive spectra have been shifted vertically for better visibility
but the horizontal displacements result from the demagnetization effects.
The measured spectra at the left panel correspond to D ≈ 0.1, while the
data at the right panel represent the situation with D ≈ 0.9.

explained above. The ratio of the integrated areas are shown in Fig. 8, while
the difference of the first moments of the lines are shown in Fig. 9. These
can be compared with the calculated curves. There are obstinate differences
between the experimental and computed data, which remain even at the limit
of zero polarization and at the highest frequency used in the measurement.

It is particularly difficult to understand the clear deviations seen in
Fig. 9, while the resonance positions can be determined very accurately at
all but the lowest frequency. We can exclude many possible hypothetical
reasons for the steadily too large separation between the interfering isotope
modes. Some of the points, which we list below, can be ruled out by the fact
that the proposed effect would cause an equal shift for both of the lines (i-
iii). Many of the mechanisms would not be active at the limit of zero nuclear
polarization (iv-viii). Also, a conflict with the measurements may spring up,
since the effect would work to the opposite direction from what we observe
(ix) or possibly just distort the line shape but with no net shifts (x). Finally,
a potential cause may be considered unlike by requiring modifications to well
established quantities (xi). Thus, we enumerate in more detail the following:
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Fig. 8. Relative intensities of the enhanced and suppressed isotope reso-
nances at f = 51, 81, 111, and 151 kHz as the function of nuclear polariza-
tion. The lines are theoretical curves using R = −0.42 without any fitting
parameters. At p = 0, the intensity ratios should assume the value 0.48
independent of frequency.
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Fig. 9. Separations of the suppressed and enhanced resonance modes at
f = 51, 81, 111, and 151 kHz as the function of nuclear polarization. The
lines are theoretical curves using R = −0.42 without any fitting parameters.
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i) Erroneous calibration constant for the static field coil is not prob-
able. The field-to-current ratio was fixed according to the 7Li resonance
and the two copper isotopes on average agree with this choice. Further,
no unintended static ambient field can cause changes in the difference of
the positions of the two resonances. Nevertheless, the magnitude of such
fields, harmful in many other ways, was checked in separate measurements
to remain below 5 µT in all three coordinate directions.

ii) Errors in the fitting procedure should not be serious, in particular
not at the highest frequency and at low polarizations, where the peaks are
regular and symmetric in shape, and plenty of spectra could be collected at
steady conditions. Errors in the determination of the phase of the signal
would give, as a first approximation, equal shifts for both peaks.

iii) Interaction with an unaccounted spin population, such as with elec-
tronic paramagnetic impurities, would produce an equal shift in field sweep
measurements for both isotopes, as the shift depends rather on the prop-
erties of the foreign moments (∼ Riµ0hxiγiρS, i for impurity with a spin
S). Furthermore, in pure metals we would probably be dealing with very
dilute contaminants, which would couple strongly to the nearby nuclei, but
not uniformly to the whole population. Therefore, the effect would probably
be just to kick off some fraction of the nuclei from responding at the com-
mon resonance frequency, or, as an inhomogeneous effect, to broaden the
nuclear-resonance lines.

iv) Erroneous demagnetization factor or the variation of it over the cross
section of the sample does not explain the deviations, since the shift persists
down to the limit of zero polarization, where the effect of the net interaction
fields vanishes.

v) Eddy current effects do give rise to small shifts in the resonance
positions, but they should affect both lines by almost equal amounts. Such
shifts arise because the penetration depth depends on susceptibility, which
is not at all negligible at the resonance at high nuclear polarizations – but
being so, this effect should nullify towards zero nuclear polarization.

vi) A pseudo-dipolar interaction, an indirect-exchange term with the
dipolar symmetry, which possibly is non-negligible in copper would not pro-
duce any observable shifts, as the exchange-type interactions are of short
range, and the angular dependence of the dipolar-like interaction nulls the
relevant lattice sums within symmetrical spin clusters. Also, as for item iv),
the interaction fields vanish as p → 0.

vii) Randomness due to the varying share of like and unlike nuclei as
nearest neighbors may produce shifts at finite polarization, because then the
dipolar sum does not completely cancel among the nearest neighbors. This
effect is presumably small due to only minor difference in the gyromagnetic
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ratios, and again, this effect vanishes at zero p.
viii) Relaxation effects could produce small shifts during the measure-

ments of the continuously decaying signal. To reduce such problems we swept
the field back and forth, and averaged every two consecutive spectra, thus
eliminating the distortions due to relaxation in the first order. Also, such
complications do not explain the zero-p offsets which are observed under
steady conditions.

ix) Line-width effects are in action also at the zero-polarization limit,
but their result is always to attract the lines irrespective of the sign of the
difference of the widths or of the cross-coupling widths. This is because they
appear squared in the expression for the coupled mode frequencies. All in
all, the line width effects are small in copper, and it is not plausible that we
would just be overestimating such effects.

x) Electric quadrupole effects would distort the line shapes symmetri-
cally and so net shift of the lines should not result. Therefore, such hy-
pothesis can be ruled out, although quadrupole effects would indeed be in
operation at any p.

xi) Of course, a larger separation of the lines could result from erroneous
gyromagnetic ratios for the copper isotopes. We do not consider this as a
probable cure for the described deviations.

So, we are left speculating, for example, about the role of the higher
moments of the spectral lines to the over-all behavior. First of all, it is clear,
that the actual line shapes are not really Lorentzian, as is the case for the
computed line shapes.

There are some distinct features in the measured signals which may hint
about the appropriate solution. First, the intensity between the coupled res-
onance lines drops remarkably low at the midpoint of the pattern. We have
not been able to reproduce such behavior by any reasonable modification of
our model. Second, the response is clearly negative at the high field side
of the peaks. This is not merely due to a maladjusted phase of the signals,
because the susceptibility actually drops negative at both sides of the peaks.
Such negative contributions make also our intensity analysis less reliable as
we do not add any ”emission component” to our fitting functions. This was
not implemented due to the difficulty of distributing any such negative share
objectively between the two lines. Also, to feel comfortable upon including
a negative part to the absorption-line shapes, an understanding about its
physical origin would be indispensable. When fitting, we simply adjusted
the background level so as to coincide with the minimum at the low field
side of the resonances. The negative contributions may, of course, give some
bias also to the determination of the first moments of the lines, but once
again, this effect becomes negligible at low nuclear polarizations and it also
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becomes less severe at lower frequencies.
Putting aside the unaccounted overall shift, the calculations mimic fairly

well the behavior of the line separation as the function of polarization. In
particular, the position and depth of the minimum in the separation, which
occurs in the course of the measurements are reproduced with a reasonable
fidelity. The minimum results from the higher field line, primarily of 63Cu,
moving faster downwards as a function of increasing polarization than the
other line at the lower field, until the repulsion between the modes overcomes
this approaching.

The ratio of the fitted intensities is systematically higher than we com-
pute, see Fig. 8. Most notably, the intensity ratio at p = 0 does not quite
settle to the value deduced from the ratio of the abundances and the gyro-
magnetic ratios, (x65γ65)/(x63γ63) = 0.48. The deviation becomes progres-
sively larger as the frequency is lowered. In fact, almost perfect compatibility
would be achieved by multiplying the theoretical curves at each frequency
by constants between 1.1 and 1.5. The overall agreement between the theory
and the experiment could not be improved by altering the exchange constant
R, as this would mainly just change the steepness of the curves.

The discrepancies in the intensity ratios are obviously at least partly due
to the same unknown effect that contributed to the separations between the
modes. However, the first guess for its influence on relative intensities would
be the opposite to what we actually see. As the lines move further apart
from each other, one would expect the interference effect on the intensities
to diminish. We are then led to reason the opposite: there is interference
between the lines even at very low polarizations, which is seen also as an
additional repulsion between the lines. These anomalies are thus more likely
of internal rather than of external origin.

We hesitate on making any definite statements about the intensity ratios
because of the already mentioned difficulties in the quantitative analysis of
the closely residing peaks. When fitting the lines we have used here a fixed
ratio for the widths of the two peaks. This is fully justified at the higher
frequencies, where freeing this restriction does not make any changes on the
results. Quite naturally, we chose the fixed-width ratio on the basis of such
fitting series. At lower frequencies, however, the extinguishing mode appears
to become broader at high polarizations, tempting to allow variation of its
width. We make no exception here, though, because we may actually see
a superposition of several effects. It is obvious, that a contribution to the
extended tail on the high-field side at low frequencies and high polarizations
is produced by variation of the demagnetization factor over the cross section
of the sample. The majority of the nuclei feel the small D and resonate
uniformly at lower (than Larmor) fields, but close to the edges of the sample
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Fig. 10. Computed spectra for copper at f = 81 kHz and p = 0.7 assuming
different values for R. Consecutive spectra have been shifted vertically for
better visibility but the horizontal displacements result from the changing
R.

D deviates ostensibly (in a continuous fashion, of course) from the bulk
value: where D ∼ 0.3, nearly no dipole shifts occur, while in regions with
D > 1

3 to the extreme corners (D = 1) positive shifts must exist. The net
effect is an extended trail which may well resemble those seen at 21 and
51 kHz, see Figs. 1 and 6. At lower polarizations the shifts diminish and
the lines themselves become broader so that the tail effect is expected to
disappear.

Finally, we may demonstrate the sensitivity of the isotope effect on R
by plotting a series of spectra with this parameter varied at a constant po-
larization, see Fig. 10. Not much changing is needed to turn the suppression-
enhancement effect the opposite to what is observed in the experiments.

The conclusion after all this discussion is that the exchange constant
adopted by Ekström et al. on the basis of their measurements on the isotope
effect at 183 kHz and on the double-spin effect below 1.5 mT, R = −0.42±
0.05, is in good agreement with our new measurements. We extended the
observations of the double-spin mode up to about 5 mT and studied carefully
the isotope effect over a wide range of frequencies. Persistent unexplained
deviations from the expected behavior were pointed out.
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Fig. 11. Comparison of our calculations with the measurements on silver at
negative absolute temperatures. The data is taken from Ref. 9. There are
no experimental points at 0.2 mT, since the suppression factor of the weaker
line was too large for reliable analysis.

3.2. Silver

Silver is dominated by the indirect exchange interaction with R = −2.5.
Attempts to observe the second harmonic line have not been successful,
which is understandable due to the mechanism increasing the width differ-
ence and thus suppressing the relative intensity of the double-spin satellite,
when |R| is large, as explained in Sec. 2.1.

Silver has two isotopes 107Ag and 109Ag with x107 = 0.52 and x109 =
0.48, with γ107 = 1.72 MHz/T and γ109 = 1.98 MHz/T, and with I107 =
I109 = 1

2 . The isotope effect is remarkably clear due to the relatively high
value of R. Most thorough published data on silver have been measured at
negative nuclear polarizations at the range p = −0.7–0.9

We merely recalculate the intensity ratios and resonance frequencies
using our formulae in Eqs. (14) and (16), the outcome of which is shown
in Fig. 11. The agreement with the measurements is satisfactory without
any parameters adjusted. Some features of the data at either field could be
better reproduced by tuning the coupling constants slightly but the overall
agreement would not be much improved. In particular the difference of the
resonance frequencies may have a minimum at small negative polarization
in B = 0.4 mT, which could be reproduced by such manipulation.

In Fig. 12 we show a decomposition of a pair of resonance lines into
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Fig. 12. Decomposition of a resultant spectrum of silver at p = −0.683 in
B = 0.822 mT into its isotopic contributions χ107 and χ109 (dashed lines).
Also the coupled modes χ+ and χ− are shown separately (dotted lines). The
full spectrum is the sum of either pair of these: χtot = χ107 +χ109 = χ+ +χ−
(solid line). The corresponding measured spectrum can be found in Ref. 9.

χ107, χ109, χ+, and χ−. The features discussed in Sec. 2.2 are clearly visible
and the resultant line shape is in excellent agreement with the real measured
data.9

What comes to the data at 0.2 mT, see Ref. 9, there really is merging of
the lines essentially at zero polarization only. The interference satellite is not
observed experimentally at finite polarizations simply because the suppres-
sion factor is so large. The calculated line shape at the frequency interval
of the actual measurement shows just a slightly elevated background level
at the high frequency side, which is easily nulled by a little maladjustment
of the phase of the signal. According to our analysis there is line crossing
below B ≈ 0.27 mT at very small positive polarizations (p < 1%), but no
significant changes of the line shape take place at the crossing point.

We conclude that the earlier adopted parameter values for silver are in
full accordance with our analysis. The good agreement between the model
and the actual data is at least partly explained by the fact that the measured
line shapes are very close to Lorentzian as are the resonances obtained from
the linear equations of motion introduced in this paper.
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Fig. 13. Measured intensity ratios of the double-spin mode compared to
the Larmor line of rhodium at p ≈ ±0.5 at different frequencies between
f = 130–830 Hz. Theoretical curves are shown for different polarizations.

3.3. Rhodium

We shall critically reexamine the data on the double-spin effect in rho-
dium.11 The conclusion about the magnitude of exchange, R = −1.0, based
on the shifts of the double-Larmor mode, is not altered but the intensity
analysis and the behavior close to the line crossing require some further
attention.

The relative exchange constant is more than twice as large as in copper,
and it is evidently just enough to change the system from exhibiting non-
crossing (fd > δd) to crossing (fd < δd) behavior of the double-spin mode.
Since this is a line-width effect, it depends on polarization (δ ∝ (1−p2)), and
the non-crossing condition should be regained at high enough polarizations.
Such change is estimated to take place at about p = 0.8 in rhodium.

We plot the relative intensities of the two modes in Fig. 13, where the
Gaussian fitted data11 for the double line are reproduced. Along with the
data three theoretical curves calculated for p = 0.5, 0.7, and 0.8 with fd =
23 Hz and δd(p = 0) = 51 Hz are shown. The polarization dependence of the
relative intensities at the vicinity of the line crossing stems from the changing
line widths, which was not accounted for in the original paper by Tuoriniemi
et al.11 The line-crossing condition is signalled by the extrapolated intensity
ratio intercepting the vertical axis at zero separation, while the non-crossing
of the lines at higher polarizations results in equal intensities for the modes
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Fig. 14. Measured resonance positions of the double-spin mode and the
Larmor line in rhodium at p ≈ +0.5. Improved theoretical curves showing
a crossing behavior are shown as solid lines.

with a finite separation. The opening up of a gap between the modes at the
crossing field B× is illustrated in more detail in Figs. 14 and 15.

The revised theoretical coupled mode frequencies for p = 0.5 are plotted
together with the data in Fig. 14. The improved compatibility is evident,
and the persistent approaching of the two modes is reproduced without any
difficulty. Below the points plotted, there is just one peak observed in the
experiment. The double-peaked structure, as seen in copper, does not appear
because the double-spin line remains weak (at low p) and sits more or less
on top of the main line.

Fig. 15 shows the resonance frequencies close to and beyond the crit-
ical polarization, at which the repulsion between the modes overcomes the
merging tendency. Some simulated resonance lines as the function of po-
larization around the crossing field B×(p = 1) = 0.07 mT at the frequency
f = 0.11 kHz are shown also. Unfortunately, the measurements at the
line-crossing region did not extend to high enough p in order to attest such
evolution experimentally.

Finally, we can compare the values for fd obtained for the two metals,
copper and rhodium. The experimental ratio is 2.6/0.023 = 110, while the
expected scaling gives Cu

Rh [γ2ρ
√

I(I + 1)] = 190. The consistency, although
not perfect, is improved from the earlier estimates.11
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Fig. 15. Transition from the crossing to non-crossing behavior in rhodium as
the function of polarization. The computed spectra at f = 110 Hz, overlaid
on the plot, show a distinct change of shape as the polarization increases:
p = 0.55, 0.65, 0.75, 0.85, and 0.9, from the smallest to the double-peaked
spectrum.

3.4. Thallium

Thallium has two isotopes with 30%/70% abundances and with gyro-
magnetic ratios very close to each other. The peculiar line-splitting behavior
observed at high nuclear polarizations13 led Oja et al.14 to propose that it
results from the isotope effect. By comparing the calculated separation and
intensities of the two modes with the experimentally observed ones, we must
conclude that this explanation cannot be correct. This is decisively so, al-
though the values for the nuclear polarization, where the exchange merged
line is expected to split, is close to where the anomaly was seen experimen-
tally. In a later paper by Heinilä and Oja the authors make a statement
parallel to this.19

To clarify why conclusions based only upon the appearance of two modes
as eigenfrequencies of the system may lead to erroneous interpretation, we
point out that even in the case of just one single isotope, with all mag-
netic moments exactly equal, one obtains two modes at finite polarizations,
if the spins are just fictitiously divided into two populations and labelled
differently. It must be realized, though, that all intensities of the second
”fictitious” mode are exactly zero, and there exists no multiple peaks after
all. If this is overlooked and one adds to the description a merging term
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Fig. 16. Estimated relative double-spin resonance intensities for the three
noble metals at p = 0.9 as functions of the magnetic field normalized by B×,
individual for each metal.

competing with the line splitting, one obtains the behavior described by Oja
et al.14

More probable cause for the structure of the thallium resonance at high
nuclear polarization is due to eddy-current effects in the metallic sample.20

Pulse-NMR with large tipping angles was used under circumstances where
the penetration of the field was not complete. This leads to complicated
and interesting effects as the penetration depth depends on susceptibility.
This, in turn, has a nuclear contribution, which is not at all negligible at
high degree of polarization and at the vicinity of the resonances, where
small excitation fields give rise to a large transverse magnetization (≡ high
susceptibility). As the magnetization is spurred to precession with varying
drive across the depth of the sample, this can lead to a complicated fine
structure of the resonance lines.20

3.5. Gold

There exist no published data on gold, so we pass by this section by just
reevaluating the relative double-line intensities for the three noble metals –
Cu, Ag, and Au – following the example of Moyland et al.,15 see Fig. 16.
The intensity ratio in Au is desperately small in all magnetic fields, and so
the only way to have any chance of observing this phenomenon is to use
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some indirect methods, as proposed in Ref. 11.

3.6. Lithium

Lithium metal has some exceptional properties, which we want to point
out. First, the abundances of the two isotopes are quite uneven, x7 = 0.92
and x6 = 0.08, and, in particular, the difference between the gyromagnetic
ratios is uncommonly large, γ7 = 16.5 and γ6 = 6.3 MHz/T. Also the spin
quantum numbers differ: I7 = 3

2 and I6 = 1. It will be interesting to learn
if the two effects discussed here indicate the same value for the exchange
constant R, while the double-spin method probes exclusively the exchange
between like nuclei and the isotope effect quite contrary that between unlike
nuclei. At any rate, the indirect exchange is expected to be rather weak,
|R| ¿ 1, and presumably ferromagnetic. Such a crude estimate can be made
on the basis of the large Korringa constant, 45 sK, indicating weak coupling
between the nuclear spins and the conduction electrons. The positive sign
is predicted by the free electron model of Ruderman and Kittel.5

As a final note we can speculate about the possibility of a direct ex-
change between 7Li nuclei. We are dealing with one of the lightest isotopes,
and consequently, the zero-point vibrations have a reasonably large ampli-
tude, of the order of 10% of the lattice spacing. The lithium lattice is too stiff
to allow any tunnelling contribution, but the exchange due to the Coulomb
repulsion might be marginally perceptible.21 Such direct-exchange effects are
decisive for the nuclear-magnetic ordering in solid 3He around 1 mK. Inter-
estingly, the more abundant Li nuclei are fermions whereas the lighter ones
are bosons. Therefore, the direct exchange is relevant for the heavier isotope
only and any observed difference between the exchange constants of the two
isotopes may be an indication of such effects.

It is too early to present any actual results on lithium in this paper, but
we have indeed observed both the double-spin effect on 7Li and also a weak
isotope effect between the two spin species.

4. CONCLUSIONS

We have discussed two NMR phenomena characteristic for polarized
spins, which allow an exclusive experimental determination of the exchange-
type coupling between the nuclear moments. When the exchange term is
weak or moderate compared to the dipolar coupling, the exchange parameter
R is most reliably found by examining the shift of the double-spin mode as
the function of nuclear polarization. For large values of R, the broadening
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of the secondary line reduces its relative intensity easily beyond the limits of
experimental resolution. In such cases, the existence of two or more isotopes
with a non-zero nuclear spin, if so fortunately occurs, gives an opportunity
to study the so-called suppression-enhancement effect of the isotopic lines.
This is an interference phenomenon between the different spin populations,
and depends strongly on the coupling parameter R thus allowing its accurate
determination.

We presented here a uniform description of both of these effects on the
basis of the equations of motion for the spin operators. We reviewed the
application of these methods to several pure metals and reanalyzed some of
the data by our improved formulations. We presented new extended data on
copper and pointed out some remaining inconsistencies with the proposed
description.
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6246 (1999), and references therein, H. Ishii, this issue.

5. M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
6. M.T. Huiku, T.A. Jyrkkiö, J.M. Kyynäräinen, A.S. Oja, and O.V. Lounasmaa,

Phys. Rev. Lett. 53, 1692 (1984), A.J. Annila, K.N. Clausen, A.S. Oja, J.T.
Tuoriniemi, and H. Weinfurter, Phys. Rev. B 45, 7772 (1992), H.E. Viertiö and
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