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Abstract

We introduce an influence diagram game that represents the control decisions
of pilots in one-on-one air combat and produces the best myopic control strategies
under the assumption that the adversary behaves in the worst possible way. Such
a game model could be considered as the control system of an autonomous agent
operating in an uncertain and hostile environment and could be utilized, e.g., in a
guidance system that controls aircraft in an air combat simulator. We first present
an influence diagram modeling the control problem from the viewpoint of a single
player. On the basis of this model, a non-zero-sum influence diagram game con-
taining explicit control variables for both players is structured. The game model
graphically describes the elements of the decision process, contains the state equa-
tions for the dynamics of the players, and takes into account the preferences of the
players under conditions of uncertainty. Depending on the information structure
of the influence diagram game, it admits either a Nash or a Stackelberg equilib-
rium solution. These solutions are obtained by converting the influence diagram
game into a game in strategic form or into nonlinear optimization problems and by
solving them. To demonstrate the influence diagram game, a numerical example is
presented.

1 Introduction

Air combat simulators contain computer-guided aircraft whose main component is a
model that aims at imitating the decision process of a pilot and, on the other hand,
producing as good combat decisions as possible. The decision model should represent
and solve complex decision making problems, e.g., on maneuvering. The problems con-
tain multiple conflicting objectives and must be solved based on uncertain and time
varying information. In addition, the pilot’s decision making process is complicated by
the behavior of the adversaries. In this paper, these inherent features are taken into ac-
count in the modeling of the pilot’s control decision in one-on-one air combat by utilizing
the methodology of influence diagrams (IDs) (Howard and Matheson, 1984) and game
theory (see, e.g., Basar and Olsder, 1995).

Traditionally, tools from noncooperative differential game theory (see, e.g., Basar and
Olsder, 1995; Isaacs, 1965) have been utilized in the modeling of one-on-one air com-
bat. Although game optimal maneuvers can be obtained by solving such games, pure
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differential game models have not been used in the guidance models of simulators mainly
because of the oversimplifications needed in differential game formulations. Existing guid-
ance models are based, e.g., on the selection of predetermined control laws using game
theory (Neumann, 1990). In addition, models that try to imitate the pilot’s decision mak-
ing have been developed. These models are knowledge based expert systems (McManus
and Goodrich, 1989; Stehlin et al., 1994), heuristic value driven systems (Lazarus, 1997)
or discrete dynamic games (Austin et al., 1990; Katz, 1994). Air combat models that
combine artificial intelligence and game theory have also been introduced (see, e.g., Le
Menec and Bernhard, 1995). The influence diagram game (IDG) approach presented in
this paper offers an alternative way to include the model of the pilot’s decision process
into a guidance system.

The IDs representing the pilot’s maneuvering decision in a duel between two aircraft
have been developed earlier in Virtanen et al. (1999) and Virtanen et al. (2004a).
In these models, the control decision process is represented by assuming that the pilot
receives information about the state of the adversary via imprecise measurements on the
momentary combat state. The rational behavior of the adversary is omitted. Here, we
introduce an IDG that contains explicit control variables as well as other components
needed for modeling the control problems of both the players concurrently. By solving
the game, one can determine the best control for one player with respect to the worst
action of the other player. The basis of the game model is an ID that represents the
control decision from the viewpoint of a single player.

IDs have been used in the modeling of single decision maker problems. Although the
possibility to use them in modeling games has been introduced in Shachter (1986) and
there have been some attempts to utilize them in game situations (see, e.g., Smith,
1994), the first explicit ID representation, the multi-agent influence diagram (Koller and
Milch, 2001; Koller and Milch, 2003) for describing games was presented only recently.
The multi-agent ID represents a static game problem in a compact form and offers an
efficient solution approach. There are also alternative approaches for applying decision
theoretical principles in the modeling of behavior of rational agents in a game situation.
For instance, in Gmytrasiewicz (2003), Markov decision processes are generalized for
taking into account the actions of other players.

In this paper, the underlying dynamics of the control decision problem is taken into
account by including differential equations representing the dynamics of aircraft in the
IDG. Such a dynamic problem cannot be tackled with the formalism of multi-agent IDs
because it does not treat games with a state and does not contain a model describing the
dynamics of the players. The IDG representation under consideration is constructed by
combining two separate IDs. One of these diagrams represents the control decision form
the viewpoint of a single player whose belief about the decision process of the adversary is
modeled by the other diagram. Utility functions (see, e.g., Keeney and Raiffa, 1976) are
used to measure the overall preferences in different combat states. Because both players
have utility functions of their own, the resulting game is non-zero-sum. The payoff
functions of the game are associated with the expected utility. The IDG allows the use
of both discrete and continuous control variables. In the former case, the most desirable
control alternative is obtained by converting the diagram into a game in strategic form.
The continuous control variables lead to optimization problems that can be solved using
nonlinear programming.

The information structure of a game describes all the information available to players
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Figure 1: An ID representing the control decision from the viewpoint of the DM.

about the state of the game as well as about behavior of adversaries. In the IDG, it can
be symmetric or asymmetric. The former structure refers to a situation in which both
players are aware of all the elements of the game. Then, the solution of the game is a
Nash equilibrium (e.g., Basar and Olsder, 1995). The equilibrium of this type does not
always exist and is not necessarily unique (e.g., Basar and Olsder, 1995). This problem
can be avoided by assuming that one player, the leader, has knowledge of all the elements
of the game whereas the other one, the follower, makes the decision based on his or her
probabilities and utilities as well as on the leader’s action, i.e., the information structure
is assumed asymmetric. Then, the IDG admits a solution called a Stackelberg equilibrium
(see, e.g., Basar and Olsder, 1995).

The paper is structured as follows. First, Section 2 describes an ID representing the
control decision from the viewpoint of a single player. Section 3 formulates an IDG
modeling the control decisions of both players involved in one-on-one air combat. Section
4 discusses the solution of the IDG. Section 5 gives a numerical example, and Section 6
concludes.

2 Qualitative influence diagram for the control decision

We first consider a control decision from the viewpoint of a single player called the
decision maker (DM). Assume that the control decision is taken based on uncertain
information that is received by observing the combat situation and anticipating the states
of the players a short time interval ahead. Such a myopic decision process is represented
qualitatively by the ID shown in Fig. 1.

At the decision instant, the momentary state of the DM is given in the Present State node
and the state of the adversary (AD) in the Adversary’s Present State node, respectively.
The states define the current combat state that is calculated in the Present Combat State
node. The Maneuver node represents the control of the DM. The future state of the
DM after the given planning horizon is calculated in the State node that depends on the
momentary state of the DM as well as on the employed control.

Arcs pointing to the decision node imply that the DM’s information consists of his or her
own state data and an uncertain observation about the combat state. The observation



process is modeled by the Present Measurement node. The threat assessment, utilized
when selecting the best control, is represented by the Present Threat Situation Assessment
node that infers the threat situation from the viewpoint of the DM.

The outcomes of the chance node Adversary’s Maneuver describe the control alternatives
of the AD. The probabilities of the outcomes reflect the DM’s belief about the selection
of the AD’s control. The probabilities are conditioned on the momentary state of the
AD and the future state of the DM. The anticipated states of the AD are included in the
Adversary’s State node. The future states of the players define the anticipated combat
states that are represented by the Combat State node.

The Situation Evaluation node evaluates each combat state that can be achieved using
the feasible control alternatives of the players. In practice, the evaluation can be carried
out with a utility function (see, e.g., Keeney and Raiffa, 1976). The utilities associated
with each combat state depend on the state measurement of the DM that is represented
by the Measurement node. In addition, the utilities are affected by the Threat Situation
Assessment node representing the upcoming threat situation. It is estimated with the
help of the DM'’s threat assessment at the decision instant as well as of the measurement
about the anticipated combat state.

3 Influence diagram game for the control decisions

We next introduce an IDG that contains decision nodes and other components needed
for describing the control decisions of both the players. During the combat each player
tries to

1. Avoid being captured by the other player
2. Capture the other player.

The aim of the IDG is to produce the best control for the DM with respect to the above
goals under the assumption that the AD acts rationally according to his or her goals. In
other words, the worst case control strategy of the DM is identified.

Assume that the DM’s belief about the AD’s representation of the control problem is the
same as his or her own. Hence, the structure of the ID representing the control problem
from the viewpoint of the AD is similar to the model shown in Fig. 1. When the control
problems of both the players are included explicitly in the same model, a non-zero-sum
IDG results, see Fig. 2. It is constructed by combining two IDs that both represent a
one player control decision problem. Although the structures of the single player IDs are
now similar, they could also differ from each other.

In the IDG, the underlying dynamics is taken into account by describing the evolution of
the players’ states with the differential equations

xk(t) = fk(xk(t)vuk(t»? xk(o) = ZEIS, k=D,A, (1)

where z¥(t) € R are the state variables, the control variables u*(¢) belong to sets S¥,
k = D, A, for all ¢, and x} are the given initial states. The superscripts D and A refer
to the DM and the AD, respectively. In practice, the state equation (1) represents the
motion of an aircraft. The states of the players define the momentary state of the combat

ct) = g(a(t), 2" (1)), (2)
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Figure 2: An IDG representing the control decisions of both the players. The dashed
arc implies the information structure of the game.

where ¢(t) € R refers to the variable describing the combat state. For simplicity, we first
assume that z(t), u(t), and ¢(t) are scalars.

The control variables of the players at the discrete decision instant ¢, denoted by uf :=
uk(t), k = D, A, are included in the decision nodes Maneuver of the IDG shown in Fig.
2. The variables can be continuous, uf € S* C R, or discrete, uy € S* = {d}, ..., d }.
At the decision instant, each player knows the sate of his or her own, z¥ := z*(t), that
is given in the deterministic Present State node. In addition, the player assesses the
threat situation and receives an uncertain observation about the current combat state,
¢y := c(t), that is defined by the states of the players according to (2) and included in the

deterministic node Present Combat State.

Recall that during the combat, both the players aim at capturing the opponent and at
the same time avoiding being captured by the opponent. The target set of each player
representing, e.g., the launching area of a missile is defined as

XF = {e()[9*(g(="(1), 2" () < 0}, k=D, A, (3)
where the function U¥(.) measures the distance of the combat state from the target set
of player k.

The threat assessment of player k is modeled by a discrete random variable ©F included
in the chance node Present Threat Situation Assessment. It represents the prior belief
of player k about the threat situation at time t. The outcomes of OF reflect distance
between the current combat state and the target sets. For the DM, the outcomes are

e Neutral, 0P: ¢; is far from X? and X“
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e Advantage, 02: ¢, is near X and far from X*
e Disadvantage, 07: ¢, is far from X and near X“

e Mutual disadvantage, 0F: ¢, is near X” and X4

For the AD, the outcomes are obtained from the same list by swapping the indices D
and A. For instance, the DM’s probability of the "Advantage" outcome is high if the
combat state is near the DM’s target set and far from the AD’s one. In general, the
distance between the combat state and a target set can be considered small when the
value of the function W* used in (3) gets close to zero. The probabilities of the outcomes
are denoted by P(0F) .= P(©F =0F),i=1,...,4, k = D, A, and they sum up to one, i.e.,
Z?:l P(Qf) =1L

Often, the state observation process is continuous in its nature, and its outcome should be
described by a random variable with a continuous probability distribution that depends
on the true state and the device with which the state is being observed. For instance, the
state observation can be assumed normally distributed with an expected value equal to the
exact combat state ¢; and a variance 0% describing the accuracy of the sensor device. In the
forthcoming numerical solution process of the IDG, continuous distributions must finally
be discretized. Since discrete distributions also simplify the presentation, we discretize
the observation process already at this stage. Consequently, the observations of player
k are represented by a discrete random variable ®* included in the chance node Present
Measurement. The magnitudes of its outcomes depend on the combat state which can
be expressed, e.g., as

¢?(ct) = Qk(cta]) =+ (.] - % - %)0—27 ] = 17 - Mgy k= D7A (4)

Here, the outcomes are chosen symmetrically around the exact combat state. The disper-
sion of the outcomes can be affected by scaling the variance o with a suitable factor. ng
is the number of the outcomes that can be interpreted as the coarsity of the discretiza-
tion. The given probabilities of the outcomes are denoted by P(qﬁ?) = P(®F = gbf),
j = 1, cey N

The upcoming states of the players, 7%, k = D, A, after the planning horizon At are given
in the State nodes. They are calculated by integrating (1) with uf, i.e.,

t+At
Sl = bty =ak o [ b )
t

The set of the predicted combat states, ¢;, defined by the states of the players is repre-
sented by the deterministic node Combat State. Its outputs that can be obtained with
the feasible control alternatives of the players are calculated according to (2), i.e.,

Glug upt) = (@ (), 37 (u)) = g(&7 (uf), 2 (ufh)). (6)

The chance node Measurement contains a random variable Cﬁf, k = D, A, that models
the player’s observation about the future combat state. The outcomes of @f, denoted
by (;S;“, j = 1,..,ng, and their probabilities, P(¢}) := P(®F = ¢h), j = 1,..,ng, are
similar to those of the random variables included in the Present Measurement nodes



except that the magnitudes depend on the future combat state instead of the present
one, i.e., aﬁk(ut uft) = aﬁk(ct(ut Jult)) = QF (& (uP, ut); 7) where QF(.) is given by (4).

The discrete random variable @f representing the upcoming threat situation for player
k at time t + At is given in the chance node Threat Situation Assessment. The meaning
of the outcomes, 6%, i = 1,...,4, is the same as in the Present Threat Situation Assess-

ment node. Their probablhtles are conditioned on the future state observations &f and
calculated by using Bayes’ theorem as follows:

P(0F165(uf 1)) := P(OF = 0}|C = ¢5(&(uy uit))) =
P(0F)p* (9 (eu(up uit))|OF = 0F)
PO}

211 ( ( (5(utaut))‘@k—8k)
i=1,..,4, j=1,...,n4, k=D, A

(7)

\_/A

Here, the probability inference requires a continuous random Varlable denoted by C,
for the combat state variable. The likelihood function p*(- |@k = 0¥) represents the
distribution of C' under the supposition that the outcome of ©F is Hf. The forms of
the likelihood functions used in Eq. (7) determine the rate of change of the threat
probabilities. Note that the threat probabilities at time ¢, P(6%), i = 1, ...,4, are used as
the prior probabilities in (7) when calculating the posterior probabilities P(6¥|-). For the
details of the probability updating and the suitable likelihood functions, see Virtanen et
al. (2004a).

Each combat state that can be achieved using the feasible control alternatives is evaluated
by utility functions included in the Situation Evaluation nodes. The functions capture
the preferences of the players and depend on the upcoming threat probabilities as well
as on the combat state measurement. In general, the relative importance of the players’
goals depends on the current combat state. Thus, each outcome of the Threat Situation
Assessment node leads to a particular utility function.

Assume that the combat state is described by more than one variable, i.e., c(t) € RP.
Then, the utility function associated with the outcome 6} of ©f and the outcome ¢% =
(0%, ... ¢k ]T of ®F, can be expressed as

p

( ¢k ut 7ut Z lkzvlkl utDau;‘,A» (8)

where the single attribute utility functions v;” map each combat state variable into the
interval [0, 1]. The weights wl " describe the relative importance of objectives represented
by the single attribute utility functions. The weights are limited to [0, 1] and sum up
to one. Because the single attribute functions and their weights are specific for each
outcome of the threat assessment, the weighted sum is a valid representation of preferences
(Virtanen et al., 2004a). In the IDG under consideration, the combat state is described
by one variable. Therefore, there is no need for the weight vector and only one single
attribute utility function is required in the aggregated function (8). A detailed description
and discussion on the multiattribute utility model applied in IDs is given in Virtanen et
al. (2004a).

The information structure of a game refers to all the information available to the players
about the game situation. The IDG presented here contains imperfect information that
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Figure 3: A parameterized ID representing the control decision of player k, k = D, A.

is either symmetric or asymmetric. The asymmetric information structure means that
the players have different information either of the structure of the game or the current
game situation (e.g., Gibbons, 1992). It is assumed that the players cannot observe the
exact state of the combat, which causes the imperfect information (Basar and Olsder,
1995).

The information structure of the IDG cannot be defined by using the standard metho-
dology of IDs because the time precedence of decision nodes should be fixed and defined
by directed arcs. We solve this problem by introducing a new meaning for an arc in a
two-player IDG. A dashed arc between the decision nodes of the players implies the infor-
mation structure of the game. Asymmetric information is indicated by an arc that leads
from one decision node to the other one. The IDG of this type represents a Stackelberg
game that is a model for a leader-follower situation (e.g., Basar and Olsder, 1995). The
initial node of the arc contains the controls of the leader who assumes or is aware of the
opponent’s preference model and the terminal node refers to the follower who makes the
control decision based on state observations and utilizes information about the leader’s
decisions during the decision making process. A two-way dashed arc refers to a sym-
metric information structure, i.e., both the players have the knowledge of the opponent’s
probabilities, utilities, and information. Then, the IDG admits a Nash equilibrium (see,
e.g., Basar and Olsder, 1995).

The dashed arc in the IDG shown in Fig. 2 implies that the DM knows or assumes the
game situation of the AD, i.e., the DM acts as the leader of a Stackelberg game. By
reversing the information structure arc, the AD would utilize knowledge of the DM’s
game situation in the decision making. A two-way dashed arc between the decision nodes
of the IDG would imply the symmetric information, i.e., both the players act by knowing
all the elements of the game.

4 Solution of the influence diagram game

When designing the best control strategy of the DM against the worst possible action
of the AD, a Nash or a Stackelberg equilibrium of the IDG must be solved. In the first
place, the information available to the players is assumed symmetric. Then, the Nash



equilibrium solution providing the best control of the DM under the assumption that
the AD behaves in the worst possible way is determined. If there is no unique Nash
equilibrium, the asymmetric information is assumed and the Stackelberg equilibrium
solution is applied in the design of the worst case control. Such an equilibrium is always
admitted by non-zero-sum games (see, e.g., Basar and Olsder, 1995).

A solution approach for the IDG introduced here is based on decomposition of the original
game model as well as on decision tree representations. First, two parameterized IDs
representing the control decision from the viewpoint of a single player are constructed.
Then, the best control strategies providing the highest expected utility are determined
by converting the IDs into decision trees and solving these trees. The use of the expected
utility maximization criterion is justified by the utility theoretical definition of rationality
(see, e.g., Keeney and Raiffa, 1976).

The decomposition of the IDG is carried out such that the control and state variables of
the AD are considered as given parameters in the ID that models the control decision of
the DM, and the control and the state of the AD are parameters in the DM’s decision
model, respectively. The resulting parameterized ID representation is shown in Fig. 3.

The parameterized IDs are solved by using their decision tree representations, see Fig.
4. Each path of the tree from the Maneuver node to the Situation Evaluation node gives
a particular utility V% (u?, ') == v k(g gzﬁk(ut ,u;')) whose probability is P¥;(uf, ui') :=

P(¢5) P (0% b (uP ,uf‘)), i=1,..,4,7=1,..,n4 k= D, A. The expected utlhty obtained
with the controls u” and u! is

Ng 4
Ut 7Ut ZZ ut 7Ut Vk (utDau?> (9)

that is used as the game’s payoff function for player k. The DM aims at maximizing J?
and the AD J4, respectively.

Different solution types of the IDG are described by utilizing the concept of optimal
reactions (see, e.g., Basar and Olsder, 1995). The optimal reaction of the DM, denoted
by uP” (u), is a function of the AD’s control. It returns such a value for the DM’s control
that maximizes the payoff function J” when the AD is employing the control u{'. The
optimal reaction of the DM is expressed as

up”(u) = ang max, J°(u’ i), (10)

i.e., the payoff function of the DM is maximized with respect to the control of the DM
subject to the feasible control set of the DM and the given control value of the AD. In the

same way, one can define the optimal reaction for the AD that is denoted by u!’ (ul).

The Nash equilibrium solution of the IDG, (u?” u™), must satisfy
TP (wf ") < JP(uf” ) Yup € S, an
TP ult) < JAuP” ul™) Vuit € 54,

The Nash equilibrium is such that neither player wants to deviate from it. Note that

the definition of the Nash equilibrium can also be expressed with the help of the optimal
reactions by requiring u””(u") = u (uP").

9
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the control decision of player k, k = D, A.

If the design of the DM’s best control strategy is based on a Stackelberg equilibrium, it is
assumed that the DM, whose decision process and belief about the AD’s decision process
are represented in the IDG, acts as the leader. Then, the DM selects his or her best
control by utilizing all the information about the game. The follower, i.e., the AD in the
IDG shown in Fig. 2, chooses the best control of his or her own by knowing the decision
of the DM. Because the DM is aware of the utilities and probabilities of the AD, he or
she also knows the payoff function of the AD and thus the optimal reaction of the AD
can be determined. The Stackelberg equilibrium solution of the IDG, (uP”, u"), must
satisty
TP (uf, il (WP)) < TPl u () Yup € 5P,
JA(ul S,ut ) < JAWP’ u) Yui € S4.

The definition of a Stackelberg equilibrium solution could also be given in the case in
which the AD acts as the leader.

(12)

When the control variables of the players are discrete, ie., uy € S* = {df,...d} },
k = D, A, the IDG can be represented in strategic form that is an np Xny blmatrlx The
form displays the sets of feasible decision alternatives S” and S available to each player
and the values of the players’ payoffs J*(dP,d'), i = 1,...,np, j = 1,....,na, k = D, A,
defined by (9), related to each combination of the players’ control alternatives. Nash and

Stackelberg equilibria of the original IDG are obtained from this matrix game.

An ID containing continuous decision variables and discrete random variables can be
converted into a nonlinear optimization problem. This correspondence is introduced in
Virtanen et al. (2004a). Hence, when the control variables of the players are continuous,
ie., u¥ € S* C R, k = D, A, the parameterized ID can be expressed as a nonlinear
optimization problem in which the objective function is the expected utility and the
constraints consist of the relations between the variables of the IDG. The parameterized
ID of player k leads to the optimization problem of the form

4

max Y N P(SF) P(OF|6 (uf, u))o" (67, &5 (up uit)) (13)

west T i

subject to
P(OF |65 (uf ul)) = H[P(OF), &) (uf, u)],
1=1,...,4, 7=1,...n
¢k(ut >ut) Qk(ct(utD>u;§4) ]) Jj= 1,...,TL¢

Zy(u) = 7y + f'(zy, w)At, 1= D, A.

10



Here, the functions g as well as H*, Q% f* and v* are defined by (2), (7), (4), (1), and
(8), respectively. For simplicity, the upcoming states of the players in (17) are determined
by using the Euler method in the integration of Eq. (5). The given parameter set of the
problem (13)-(17) contains the states of the players at the decision instant 2%, k = D, A,
as well as the prior threat probabilities P(6F), i = 1,...,4, the observation probabilities
P(¢), j =1,...,n4, and the control of the opponent u;.

In the solution of a Nash equilibrium, the optimization problems representing both the
DM’s and the AD’s control problem must be solved simultaneously. This leads to the
solution of a set of nonlinear equations consisting of the necessary conditions of optimal-
ity for both the optimization problems. Due to the nonconvex objective function and
constraints of the problems, the necessary conditions provide only a solution candidate
for the Nash equilibrium. Its existence must be confirmed by examining that the solution
satisfies the conditions (11).

From the optimization point of view, a two-player Stackelberg game is a bilevel optimiza-
tion problem (see, e.g., Bard, 1998; Ehtamo and Raivio, 2001). The leader maximizes
his or her payoff function subject to the follower’s optimization problem that gives the
optimal reaction of the follower. Recall that the DM acts as the leader and the AD is the
follower. Then, a Stackelberg equilibrium for the IDG is obtained by solving the bilevel
optimization problem that consists of an upper level problem referring to the DM’s opti-
mization task, i.e., k is set to D in (13)-(17), and a lower level problem referring to the
AD’s optimization task, i.e., k is set to A in (13)-(17). In the bilevel optimization, the
latter problem is regarded as a constraint of the former one.

A way to solve the bilevel optimization problem is to take the necessary optimality condi-
tions of the lower level problem as constraints to the upper level problem (see, e.g., Bard,
1998), and then to solve a standard optimization problem using nonlinear programming.
The resulting solution is only a candidate for the Stackelberg equilibrium because of the
nonconvexity of the objective function and the constraints. The validity of the solution
candidate must be checked by studying whether it satisfies the conditions (12).

5 Numerical example

In this section, the presented IDG is utilized in a simulation procedure that produces a
short-sighted qualitative solution for a two-target game (see, e.g., Grimm and Well, 1991)
modeling one-on-one air combat. In such a game, both players have a target set defined
by (3) and they attempt to drive the state of the game into own target set without first
being driven into the target set of the adversary.

In the simulation procedure, the control decisions are taken at discrete decision stages
and the players act simultaneously. In the beginning, the initial states and the initial
threat probabilities of the players must be fixed. At each decision stage, the expected util-
ity maximizing game optimal controls are obtained by solving the Nash, or if necessary,
Stackelberg equilibrium of the IDG with a solution approach described in the previous
section. The evolution of the players’ states is computed by integrating the state equation
(1) with the resulting optimal controls until the next decision stage is reached. During
the simulation, the threat probability distributions are updated such that the prior prob-
abilities at the current stage are associated with the posterior probabilities of the previous

11



stage. The simulation will be continued until one of the terminal conditions referring to
the conditions W*(-) < 0 in (3) is satisfied. This gives us the final time of the two-target
game. If the states of the players do not satisfy the terminal conditions within a prede-
termined maximum duration, the game terminates in a draw. On the other hand, when
the state of the game enters both target sets at the same time, the outcome is a joint
capture.

In the following numerical example, a three degrees of freedom point-mass model repre-
senting the dynamics of the players’ aircraft is used as the state equation (1). The control
variables of the point-mass model are discretized and its parameters correspond a generic
fighter aircraft. For illustrative purposes, the parameters are chosen such that the DM’s
aircraft is more agile than the AD’s one. The utility functions and the probability distri-
butions required in the IDG are identical for both the players. The terminal conditions
refer to a combat situation where one player has achieved the other player’s tail position.
The aircraft and preference models are described in Virtanen et al. (2004b).
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Figure 5: The expected utility maximizing game optimal trajectories of the players.
The solid curves refer to the DM and the dashed curves to the AD, respectively. Circles
denote the initial states of the players.

In the beginning of the combat game, the AD is heading toward the DM’s tail whereas the
DM is flying away from the AD. The combat situation is thus initially advantageous for
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the AD and disadvantageous for the DM. The projections of the game optimal trajectories
of the players on the x,y-, x,h-, and y,h-planes as well as the three-dimensional solution
trajectories are shown in Fig. 5. The probability distributions of the players’ threat
assessments are presented in Fig. 6. The more agile DM, although being initially pursued,
achieves a winning position in 98 s. The probability of the "Disadvantage" outcome of
the DM’s threat assessment is relatively high until 60 s, and after that, the probability
declines rapidly. During the rest of the game, the probability of the "Advantage" outcome
for the DM rises almost to unity whereas for the AD it descends practically to zero. In
the end, the DM reaches the tail position of the AD and wins the combat game.
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Figure 6: The threat probability distributions of the players. The left graph refers to

the DM and the right to the AD, respectively.

Based on the solution of the example, the IDG seems to produce reasonable controls
because the more agile DM wins the combat game by choosing the controls that eventually
lead to an advantageous situation although the initial state is advantageous for the AD.
Since the AD’s aircraft is less agile, the AD cannot exploit his or her advantageous initial
state but is eventually forced to evade the DM. It should be noted that due to the limited
planning horizon of the IDG, the expected utility maximizing control sequences are only
suboptimal solutions for the two-target game in the global sense.

6 Discussion

When determining control strategies in an air combat game, one has to take into account
the preferences and goals of the players as well as the uncertainty associated, e.g., with
state observations. In addition, the selection of controls is affected by the behavior of the
adversary. In this paper, these features are incorporated into a pilot’s control model by
representing the multiobjective control decision problem with an influence diagram game
(IDG).

Depending on the information structure of the IDG model, it admits a Nash or a Stack-
elberg equilibrium that can be considered as the expected utility maximizing control
strategy for one player when the adversary behaves in the worst possible way. The equi-
librium solutions are obtained in a feedback form, i.e., the best controls are given as a
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function of all the available information at the particular decision instant but they are
myopic due to a short planning horizon used in the IDG. If we aim at achieving better
solutions considering the overall success of a pilot in the air combat, a control sequence
maximizing the aggregated utility over the total duration of the combat should be found.
To achieve this, the IDG must be able to predict the future states of the combat further
than one decision interval ahead.

Virtanen et al. (2004a) introduce a multistage influence diagram that takes into account
the interaction of several successive maneuvering decisions in a one-on-one air combat
setting in which the trajectory of the adversary is predetermined. In the same way,
one can extend the single stage IDG presented in this paper into a multistage IDG that
represents the players’ sequential decision making process (Virtanen et al., 2004b). Then,
the combat situation is evaluated separately at each decision stage and the overall utility
is calculated by summing the single utilities. The multistage IDG can be represented
in the form of a discrete-time dynamic game and could be solved in an open-loop form
with nonlinear programming. The open-loop form means that the best controls at all
the decision stages are chosen concurrently without knowing the exact states of the game
at the upcoming decision instants. On the other hand, suboptimal control sequences
could be obtained in a feedback form by using a moving horizon control, or equivalently
model predictive control (e.g., Camacho and Bordons, 1999), approach. In this approach,
the time horizon of the original multistage game is truncated, and a feedback Nash or
Stackelberg equilibrium of the dynamic game lasting only a limited planning horizon is
determined and implemented at each decision stage. A similar moving horizon control
approach for dynamic discrete-time games is presented in Cruz et al. (2002).

The single stage IDG in which the control variables are discrete can be solved in real-
time and could be applied, e.g., in decision making systems of air combat simulators.
It could also provide a way to produce so-called reprisal strategies (Kelley et al., 1980)
that utilize the nonoptimal behavior of an adversary in a two-target game. In addition,
combining the IDG with a simulation procedure presented in the paper, one can obtain
short-sighted game optimal controls over the total duration of two-target games. Thus
far, such games have proven to be intractable and solutions are obtained only for small
problems containing simple dynamics models.

Overall, the presented IDG offers a structured and transparent way to model and simulate
the pilot’s control decision in a dynamic and uncertain one-on-one air combat setting.
The graphical representation of the IDG enables air combat experts to be involved in
the modeling and structuring process of the game because it can be easily understood
by individuals with a little decision theoretic and mathematical background. It should
be noted that the graphical representation of the IDG coincides with the multi-agent
influence diagram framework introduced by Koller and Milch (2001, 2003). However, the
game formulation described in the paper contains an explicit model for the underlying
dynamics of the decision environment that is omitted in the formalism of multi-agent
influence diagrams. Although the paper at hand does not introduce a well-defined for-
malism related to dynamic influence diagram games, a similar IDG representation may
also be utilized in other application areas in which a dynamic and uncertain system is
controlled by several agents whose goals are conflicting.

14



References

Austin, F., Carbone, G., Falco, M., Hinz, H., and Lewis, M., "Game Theory for Au-
tomated Maneuvering During Air-to-Air Combat," Journal of Guidance, Control, and
Dynamics, Vol. 13, No. 6, 1990, pp. 1143-1149.

Bard, J.F., Practical Bilevel Optimization, Algorithms and Applications, Kluwer, Dor-
drecht, Netherlands, 1998, pp. 5-8.

Basar, T., and Olsder, G., Dynamic Noncooperative Game Theory, 2nd ed., Academic
Press, London, 1995.

Camacho, E.F.; and Bordons, C., Model Predictive Control, Springer, London, England,
1999.

Cruz, J.B., Simaan, M.A., Gacic, A., and Liu, Y., "Moving Horizon Nash Strategies for
a Military Air Operation," IEEE Transaction on Aerospace and Electronic Systems, Vol.
38, No. 3, 2002, pp. 989-999.

Ehtamo, H., and Raivio, T., "On Applied Nonlinear and Bilevel Programming for Pursuit-
Evasion Games," Journal of Optimization Theory and Applications, Vol. 108, No. 1,
2001, pp. 65-96.

Gibbons, R., Game Theory for Applied Economists, Princeton University Press, Prince-
ton, NJ, 1992.

Gmytrasiewicz, P.J., "Issues in Rational Planning in Multi-Agent Settings," Proc. of
the 36th Annual Hawaii International Conference on System Sciences, Hawaii, 2003, pp.
84-91.

Grimm, W., and Well, K.H., "Modelling Air Combat as Differential Game, Recent Ap-
proaches and Future Requirements," In Hamaldinen, R.P., and Ehtamo, H., eds., Differ-
ential Games - Developments in Modeling and Computation, Springer, Berlin, 1991, pp.
1-13.

Howard, R.A., and Matheson, J.E., "Influence Diagrams," In Howard, R.A., and Mathe-
son, J.E., eds., The Principles and Applications of Decision Analysis, Vol. 2, Palo Alto,
CA, Strategic Decision Group, 1984, pp. 719-762.

Isaacs, R., Differential Games, Wiley, New York, 1965.

Katz, A., "Tree Lookahead in Air Combat," Journal of Aircraft, Vol. 31, No. 4, 1994,
pp- 970-973.

Keeney, R., and Raiffa, H., Decision with Multiple Objectives, Wiley, New York, 1976.

Kelley, H.J., Eugene, M.C., and Lefton, L., "Reprisal Strategies in Pursuit Games,"
Journal of Guidance and Control, Vol. 3, No. 3, 1980, pp. 257-260.

Koller, D., and Milch, B., "Multi-Agent Influence Diagram for Representing and Solving
Games," Proc. of 17th International Joint Conference on Artificial Intelligence, Seattle,
Washington, 2001, pp. 1027-1034.

Koller, D., and Milch, B., "Multi-Agent Influence Diagram for Representing and Solving
Games," Games and Economic Behavior, Vol. 45, No. 1, 2003, pp. 181-221.

Lazarus, E., "The Application of Value-Driven Decision-Making in Air Combat Simula-
tion," Proc. of the IEEE International Conference on Systems, Man, and Cybernetics,
Orlando, FL, 1997, pp. 2302-2307.

15



Le Menec, S., and Bernhard, P., "Decision Support System for Medium Range Aerial
Duels Combining Elements of Pursuit-Evasion Game Solutions with Al Techniques," In
Olsder, G.J., ed., Annals of the International Society of Dynamic Games, Vol. 3: New
Trends in Dynamic Games and Applications, Birkhauser, Boston, 1995, pp. 207-226.

McManus, J.W., and Goodrich, K.H., "Application of Artificial Intelligence (AI) Pro-
gramming Techniques to Tactical Guidance For Fighter Aircraft," Proc. of the AIAA
Guidance, Navigation, and Control Conference, Boston, Massachusetts, 1989.

Neumann, F., "On the Approximate Solution of Complex Combat Games," Journal of
Guidance, Control, and Dynamics, Vol. 13, No. 1, 1990, pp.128-136.

Shachter, R.D., "Evaluating Influence Diagrams," Operations Research, Vol. 34, No. 6,
1986, pp. 871-882.

Smith, J.Q., "Decision Influence Diagrams and Their Use," In Rios, S., ed., Decision
Theory and Decision Analysis: Trends and Challenges, Kluwer, Boston, 1994, pp. 33-51.

Stehlin, P., Hallkvist, I., and Dahlstrand, H., "Models for Air Combat Simulation," Proc.
of the 19th ICAS Congress, ICAS-94-8.6.2, Anaheim, CA, 1994, pp. 2190-2196.

Virtanen, K., Raivio, T., and Hamaélainen, R.P.; "Decision Theoretical Approach to Pilot
Simulation," Journal of Aircraft, Vol. 36, No. 4, 1999, pp. 632-641.

Virtanen, K., Raivio, T., and Hamalainen, R.P., "Modeling Pilot’s Sequential Maneu-
vering Decisions by a Multistage Influence Diagram," Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 4, 2004a.

Virtanen, K., Karelahti, J., Raivio, T., and Hamaél&dinen, R.P., "Modeling Air Combat
by a Moving Horizon Influence Diagram Game," manuscript, submitted for publication,
2004b.

16





