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Abstract—An approach toward the automated solution of
aircraft trajectory optimization problems is introduced and im-
plemented in an interactive program called visual interactive
aircraft trajectory optimization (VIATO). This MS Windows-
compatible software produces minimum time trajectories to a
fixed or moving target. It is easy to use by nonexperts as no
previous knowledge of the methods of optimal control theory
or mathematical modeling are needed. VIATO consists of a
graphical user interface, an optimization server, and a model
server. In VIATO, different aircraft types are represented by
a set of parameters. The equations of motion and state as well
as control constraints are fixed in advance. Since the objective
function is also specified, the user avoids the modeling and explicit
formulation of optimal control problems. Reliable convergence
to an approximate optimal solution is achieved by converting
the original optimal control problem into a finite dimensional
optimization problem. The parameterized problem is solved using
nonlinear programming.

Index Terms—Aircraft control, interactive computing, nonlin-
ear programming, optimal control.

I. INTRODUCTION

I N this paper, a way to automatically solve aircraft trajectory
optimization problems is proposed and implemented in

the visual interactive aircraft trajectory optimization (VIATO)
software. Its current version, operated by the research team,
solves minimum time climb problems, minimum time trajec-
tories to a fixed or a moving target on the vertical plane, and
three-dimensional interception problems.

The well-known theory of optimal control (e.g., [7]) pro-
vides a framework for solving optimal trajectories. Neverthe-
less, in practice, generating numerical solutions is a laborious
and time consuming task even for experts in system modeling
and optimal control theory [4], [27], [34]. As the models are
nonlinear, analytical solutions can be obtained only in some
special cases (e.g., [18]). Automating the numerical solution
process would make optimal trajectories easily accessible for
engineers, pilots, instructors, and other relevant parties, but
advances in this direction have mainly served mathematically
literate researchers (see Section II).

Off-line computation of optimal trajectories has a variety
of applications in different fields of aviation. In flight engi-
neering, optimal flight paths provide a commensurable way to
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Fig. 1. Structure of VIATO software.

analyze and compare the performance of different aircraft and
technologies [30]. Analysis of safe takeoff and landing in the
presence of windshear [8], [25], produce valuable instructions
for pilots encountering such a phenomenon. On the other hand,
minimum fuel trajectories (e.g., [36]) aim at cost-effectiveness
and help in reducing air traffic pollution.

In military aviation, knowledge of different minimum time
maneuvers is of fundamental importance (e.g., [12], [13], and
[32]). This fact already guided the seminal studies [6] and is
still acknowledged in pilot training and education. Analysis
of optimal trajectories can also reveal new ways to com-
plete given tasks. For example, mission planning in a hostile
environment can be based on estimated risk minimization
[37].

When solving a particular trajectory optimization problem,
the user of VIATO needs only to choose the aircraft model type
from the model library, select the control criterion, and specify
the initial and terminal states of the aircraft. VIATO then
creates the corresponding optimization problem and solves it
automatically. After the optimization, VIATO visualizes the
results and allows for sensitivity analysis of the solution with
respect to different model parameters.

The underlying mathematical theory is hidden behind the
user interface, and thus, pilots and other decision makers
can study and compare different scenarios independently.
Versatile visualization possibilities facilitate clear interpreta-
tion of results, and sensitivity analysis enhances the user’s
understanding of the nature of the problem. VIATO software
could therefore be considered as an off-line support tool for
decision making and design problems of flight.

VIATO has been implemented as a client-server applica-
tion. It consists of three separate blocks: a user interface
(the client), an optimization server, and a model server (see
Fig. 1). It is possible to distribute the client and the servers
to separate computers and exchange data through a suitable
network.

The graphical user interface operates under MS Windows
3.x, 95, and NT. It is implemented with Delphi [1], which is
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a component-based application development environment.
VIATO’s mouse-driven interface has a limited set of
commands which makes it easy to manage. It provides
the optimization server with the required information and
displays optimal trajectories graphically. From the interface,
optimal solutions can be exported into other applications as
well.

Aircraft of a certain type, like fighters, obey structurally
similar mathematical models that differ only in parameters
(e.g., [24]). In VIATO, the equations of motion and the
structure of possible constraints for control and state variables
are fixed in advance, and different aircraft are characterized by
a set of parameters which are saved in an aircraft model library.
VIATO’s model server maintains the library and automatically
creates continuous and smooth approximations for the thrust
force and the drag coefficients. Approximations can also be
formed interactively.

In VIATO’s optimization server, the original optimal control
problem is converted into a finite dimensional optimization
problem that is solved using nonlinear programming [19], [28],
[33]. For a recent review of different discretization schemes,
see [21]. Current nonlinear programming methods provide
reliable convergence and require moderate computational ef-
fort. Hence, the optimization can be carried out on a PC,
which is a common, widespread, cost-effective, and flexible
platform.

The paper is organized as follows. First, currently existing
optimal control software is briefly surveyed. In Section III,
the class of aircraft trajectory optimization problems, whose
solution process is to be automated, is defined. VIATO’s
optimization server and the solution method are described in
Section IV. The description of the model server is given in
Section V. The graphical user interface and the use of the
software are demonstrated by example runs in Section VI. In
Section VII, an example of sensitivity analysis is carried out.
Concluding remarks appear in Section VIII.

II. REVIEW OF RELATED OPTIMAL CONTROL SOFTWARE

The nonlinear programming for direct optimization of tra-
jectories (NPDOT) package [19] discretizes the original opti-
mal control problem by direct collocation and uses nonlinear
programming to solve the finite dimensional problem. Its
successor, optimal trajectories by implicit simulation (OTIS)
[20], solves aerospace problems and produces optimal point-
mass trajectories for different flight vehicles. The model and
the objective are specified via Fortran 77 subroutines which
have to be compiled and linked with the main program by
the user.

The variational trajectory optimization tool set (VTOTS)
software package [5] is aimed at solving arbitrary optimal
control problems. It consists of a finite element and multi-
ple shooting algorithms for solving the necessary conditions
for optimality. VTOTS uses three computer languages and
compilers.

The OptiA system [11] is an interactive environment for
the definition, solution, and analysis of nonlinear mathematical
programming problems. For optimal control problems, OptiA

uses control parameterization (e.g., [21]). Although operated
through a graphical interface, the models and objectives are
given as source code procedures.

The direct collocation program (DIRCOL) [34] discretizes
optimal control problems using direct collocation. The result-
ing finite dimensional problem is solved by the NPSOL sub-
routine [16] which utilizes sequential quadratic programming.
DIRCOL offers many sophisticated features, like the treatment
of multiple-stage models, discretization error estimation, and
adaptive allocation of discretization points. Also, in DIRCOL
the problem is defined by Fortran 77 subroutines.

The recursive integration optimal trajectory solver (RIOTS)
[31] provides an interactive environment for solving optimal
control problems via Matlab [2]. The user of RIOTS sup-
plies the objective, the constraints, and the dynamics as well
as their derivatives as M-files of Matlab. RIOTS consists
of three different programs that discretize original optimal
control problems and solve the finite dimensional problem.
It can adaptively refine the discretization mesh and compute
estimates of integration errors.

Trajectory optimization by mathematical programming
(TOMP) [23] is a Fortran module for optimal control
calculations. It uses control parametrization. The user must
write three subroutines and link them with the main program
of TOMP.

The user of this software is expected to be able to formulate
the optimal control problem to be solved, and thus, he or
she must have expert knowledge of mathematical modeling
and optimal control theory. The software requires source code
modification and recompilation every time the problem is
altered, which complicates the solution process and calls for
some knowledge of programming. In VIATO, the problem
class is fixed in advance, and the user specifies the necessary
information for the problem formulation via the graphical
interface.

III. A IRCRAFT TRAJECTORY OPTIMIZATION PROBLEMS

In an optimal control problem, the objective is to find an
admissible control function that transforms a dynamical system
from its initial state to its final state so that the given objective
is minimized, and state and control constraints are satisfied.

Identifying the state and control variables of a dynamical
system and specifying the relations between them can be
a difficult and complex task. It is obviously impossible to
translate a real-world problem into an optimal control problem
without experience in mathematical modeling.

In aircraft trajectory optimization problems, the modeling
can be avoided by specifying the equations of motion and the
constraints for control and state variables in advance. This can
be done because structurally identical differential equations
represent most point-mass aircraft models.

A. Aircraft Model

In VIATO, the dynamics of an aircraft are described by
a system of differential equations that constitutes the state
equation of the optimization problem. The equations of motion
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TABLE I
THE PARAMETERS THAT CHARACTERIZE AN AIRCRAFT IN VIATO

for the 3-D point-mass model of an aircraft are

(1)

(e.g., [24]). The state variables and refer
to the -range, the -range, altitude, velocity, flight path
angle, heading angle, and mass of the aircraft, respectively.
The normal acceleration of the aircraft is controlled with the
loadfactor and the tangential acceleration with the throttle
setting The loadfactor is the ratio of the lift
force and the gravitational force that affect the aircraft. In
3-D flight, the loadfactor can be directed with the bank angle

The gravitational accelerationand the specific
fuel consumption coefficient are assumed constant. The
aircraft mass is also included as a state variable because flight
times of several hundred seconds may reduce the mass con-
siderably. denotes the maximum available
thrust force , and denotes zero-
lift and induced drag coefficients, respectively. refers to
the reference wing area of the aircraft. Modern flight control
systems are able to reduce the induced drag (e.g., [12], [29]).
The effect can be approximated by a positive constant

The Mach number and the air density are
computed on the basis of the ISA standard atmosphere. The
equations of motion in the vertical -plane are similar to
the equations above, but the-range, the heading angle, and
the bank angle are not present.

The pilot and the aircraft itself set some constraints for the
state and the control variables. The loadfactorhas lower
and upper limits which in general depend upon the altitude
and the Mach number of the aircraft

(2)

The feasible region of stationary flight is described by the
minimum altitude constraint

(3)

the minimum velocity constraint

(4)

and the maximum dynamic pressure constraint

(5)

In addition to the constraints above, the problem definition
includes the initial and terminal conditions for the state vari-
ables. For example, in 3-D minimum time flight to a given
moving target, the terminal condition of the aircraft is defined
by

(6)

where and refer to the position of the
target at the capture instant. For a target, these quantities are
uniquely determined by the target’s initial position, velocity,
flight path angle, and heading angle. The positive constant

refers to the capture radius. Different scales of the state
variables are balanced by the coefficients and If
the flight state of the interceptor must coincide exactly with
the flight state of the target at the capture instant, then the
interceptor’s velocity, heading angle, and flight path angle
must also be included in the terminal conditions.

Different aircraft types can be distinguished from each other
by a set of parameters that are present in the dynamic system
or in the constraints. In VIATO, the aircraft is characterized
by ten parameters that are shown in Table I.



412 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 3, AUGUST 1999

B. Objective Function

With the current implementation of VIATO, one can solve
various minimum time problems including minimum time
climb, minimum time trajectories to a fixed or a moving target
on the vertical plane, and 3-D interception. A moving target is
specified by its initial position, velocity, and flight path angle.
In minimum time problems, the objective function is the total
flight time to the terminal state

(7)

Other appropriate optimization tasks such as those related
to fuel consumption and tracking could be implemented as
well. In the minimum fuel consumption problem, the objective
function to be maximized is the final mass of an aircraft

(8)

The final time is free or fixed. In tracking problems, the
objective is to maintain the aircraft as close as possible to a
given reference flight path by minimizing the average squared
deviation from it.

IV. OPTIMIZATION SERVER

The optimization server is an independent program that
is implemented with Fortran 77. The server discretizes the
problems using direct collocation [19] or a scheme based
on differential inclusions [28], [33]. The finite dimensional
approximation of the original optimal control problem is
solved by utilizing a nonlinear programming package NPSOL
[16], an implementation of sequential quadratic programming
(SQP), (e.g., [3]).

Another way to solve an optimal control problem is to
use indirect methods that solve the necessary conditions for
optimality. The necessary conditions constitute a multipoint
boundary value problem that can be solved mainly by using
three approaches: shooting methods, indirect collocation, and
finite difference methods. These methods produce accurate
results, but they are not always useful for an automated
solution process because their convergence domain is small.
The initial guess for both the state and adjoint variables must
lie close to the optimal solution. In addition, the switching
structure, i.e., the sequence of the constrained, unconstrained,
and singular arcs of the solution must be specified in advance.

A. Discretization Methods in VIATO

Several methods exist for converting optimal control prob-
lems into finite dimensional optimization problems. For a
review, see [21]. A suitable approach for automated solutions
is to discretize both the control and the state variables. In this
way, the explicit numerical integration of the state equations
and the objective function is avoided. Furthermore, the state
and the control constraints of the problem are treated as usual
constraints of nonlinear optimization. In VIATO, the state and
control discretization is carried out using direct collocation
[19] or a scheme based on differential inclusions [33].

The direct collocation method seeks the solution of the
problem among piecewise-defined polynomials that have to

satisfy the state equations pointwisely. For simplicity, assume
that the state and the control are scalars. Let

be an equidistant division of the solution
interval The state trajectory is represented in each
subinterval by cubic of the form

(9)

where is the normalized time. The control variable
is approximated piecewise linearly.

Define the defect at the center of each subinterval as

(10)

where denotes the state equation of the original optimal
control problem. The quantities and
can be expressed using and (see [19]).
Therefore, the state and the control variables at each time
point become decision variables of the finite dimensional
optimization problem. Now the controls at the time points
can be selected freely within their bounds to minimize the
objective function subject to and the state and control
constraints. The resulting solution satisfies the state equation
of the original problem at the center of each subinterval and
at each time point

The scheme based on differential inclusions replaces the
differential equation constraint with a requirement that each
state must lie in the approximate set of attainability of the
previous state. A set of attainability is defined as the collection
of the states that can be reached from a given state in some
finite time interval with admissible controls. To identify the
set of attainability, the hodograph of the dynamical system is
employed. It is defined as the set of possible state rates that
can be achieved in the current state with an admissible control
[33]. If the state equation and the constraints of the optimal
control problem are given by

(11)

the hodograph of the dynamic system at statecan be written
as

(12)

Let us assume that there are smooth functionsand such
that the hodograph can be expressed as

(13)

In practice, and are formed by eliminating the control
variables from the state equationsand the constraints and

After identifying the hodograph, the first-order approxima-
tion of the set of attainability at state within the time interval

is given by

(14)

where

(15)

Let again be a subdivision of the
solution interval. Using the first-order approximation of the
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state derivative, the approximate set of attainability (14) can
be replaced by the conditions

(16)

In this way, the constraints (11) are replaced with the approxi-
mate relations (16) that can be treated as constraints of a finite
dimensional optimization problem.

In the optimization tasks which are implemented in VI-
ATO’s optimization server, the controls can be eliminated
analytically. In problems where the explicit elimination is not
possible, the controls must be solved using some iterative
method every time the constraints (16) are evaluated. The
elimination of the control variables might be beneficial in
problems involving singular control arcs [33]. The direct
collocation and differential inclusion schemes are compared
in [28].

Define vector of the decision variables by
for the direct collocation method

and for the differential inclusion
scheme, respectively. Here, means the transpose, is the
final time, and and refer to the state and
the control vectors at time The dimension of depends
upon the dimension of the state and control vectors. The
discretization methods replace the optimal control problem
with the finite dimensional approximation

subject to

where is the objective function, and and define the
appropriate equality and inequality constraints.

The selection of the discretization grid affects the accuracy
of the finite dimensional solution. In principle, the accuracy
can be increased by careful allocation of the discretization
points. For example, if solutions obtained by equidistant points
show rapid state transitions in some time interval, then the
problem can be solved again such that the points are placed
more densely in the intervals of rapid state transitions and more
sparsely in intervals with slow state rates. In practice, the dis-
cretization points must be updated adaptively. In this process,
the problem is first solved using the given gridpoints. Then
the grid is refined by adding and relocating the gridpoints.
The refinement strategies are based mainly on either the local
approximation error [4] or the equidistribution of the approxi-
mation error [22]. The adaptive grid refinement is useful if the
initial grid is sparse. Nevertheless, even personal computers
are so powerful today, that the optimization problems can be
solved using a sufficiently dense grid.

VIATO utilizes equidistant discretization and continuation
with respect to the number of the discretization points. When
solving an optimization problem, the user can choose the

discretization method and the initial number of the discretiza-
tion points. The problem can first be solved with a sparse
discretization grid to get a rough initial estimate of the solution.
Then the accuracy of the approximation is increased by
adding discretization points. While the next solution is being
computed, the user may already study the previous solution.
The new solutions are produced such that the previous solution
is used as the initial guess. In this way, a solution with a dense
discretization grid is often obtained faster than by solving the
problem only once using a dense grid.

B. Nonlinear Programming by SQP

SQP is widely used in solving discretized optimal control
problems, and several versatile implementations of SQP are
available (e.g., [16], [17], [35]). SQP is a method in which the
objective function is approximated with a quadratic function
at each iteration step, and nonlinear constraints are linearized.
The resulting linear-quadratic problem is solved by a suitable
quadratic programming method, and a line search between the
iteration point and the solution of the quadratic problem is
carried out. The SQP method converges rapidly and reliably
when applied to a discretized optimal control problem [17].

Implementations that treat matrices as sparse [9], [17], [26]
can be used, because the Jacobian of the constraints and the
Hessian of the Lagrangian are almost block-diagonal. Never-
theless, the special treatment of sparsity is beneficial only if the
number of discretization points is large. VIATO’s optimization
server is implemented with the NPSOL subroutine [16] that
treats the matrices as dense.

In NPSOL, SQP is implemented using an augmented La-
grangian merit function [15]. During the solution process,
the step length of the line search is chosen such that the
value of the merit function is decreased properly. Convexity
of the Lagrangian is ensured by a quadratic augmentation
term. Therefore, the iteration point will converge from any
reasonable initial guess to a point that satisfies the first-order
necessary conditions for optimality.

In optimization routines, the values of the objective and
the constraints and their first derivatives with respect to the
decision variables are needed at arbitrary points. The deriva-
tives could be computed by finite differences. In VIATO’s
optimization server, faster and more reliable convergence is
achieved by using analytical expressions.

C. Initial Guess for Decision Variables

Although nonlinear programming methods have a large con-
vergence domain, the initial guess for decision variables cannot
be chosen arbitrarily. VIATO’s optimization server determines
the initial guess from a straight line connecting the initial
and the terminal conditions

(17)

where is the number of the discretization points, is the
initial value, and is the terminal value of the particular state

If the initial or terminal value of a variable is not fixed, an
initial guess is generated using heuristic rules that utilize the
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given initial and terminal states. An initial guess for the final
time is produced by estimating the average velocity of the
aircraft and computing the distance from the initial state to
the terminal or predicted capture position.

Computational experience with VIATO has shown that in
most cases, this initial guess leads to convergence. Further-
more, convergence from this nonfeasible initial guess seems
to be faster than from a feasible initial guess that is obtained
by integrating the state equations with appropriate feasible
controls.

D. Scaling of Variables and Constraints

An essential part of the solution is the scaling of the
variables and the constraints. Optimization routines gener-
ally assume that the decision variables and the constraints
are roughly of the same magnitude. Badly scaled decision
variables and constraints may cause numerical errors in the
iteration. A suitable scaling is an affine transformation [15].
In VIATO, each state and control variable is normalized by
the absolute maximum of the initial guess

(18)

Here is the number of discretization points, is the
scaled variable with specified as above, and
are the initial guesses for the particular state or control
variables. The final time is scaled as

(19)

where is the estimated upper bound for the final time
The components of the constraintsand are scaled by their
values at the initial guess.

V. MODEL SERVER

In VIATO, different aircraft types are characterized by a set
of parameters which are stored in a model library. The values
of the induced drag and the zero drag coefficient, as well as
the maximum available thrust force, are known only at certain
Mach numbers and altitudes as tabular data. The optimization
routine needs the values of the parameters at arbitrary states,
and therefore, the data must be approximated or interpolated
using some continuous functions.

An interpolation fits the data exactly, but it might fluctuate
between the data points. Furthermore, the data often consists
of measurements which may include noise, and thus, exact
fitting is not appropriate. For these reasons, approximation is
chosen instead of interpolation in VIATO.

For optimization purposes, the approximation has to be
smooth and continuous. Furthermore, the evaluation of the
approximation must not require considerable computational
effort, because the optimization routine calls the approximation
numerous times during the optimization.

The model server of VIATO automatically creates con-
tinuous and smooth approximations which can be affected
interactively. The user can make a tradeoff between the
accuracy and the smoothness of the approximation (see Fig. 2).

The drag coefficients are approximated using a rational
polynomial or piecewise cubic splines. The form of the rational
approximation is

(20)

where the coefficients and are determined by least squares
fitting. When the approximation is determined interactively,
the user can test different degrees of the denominator and the
numerator and select the most suitable ones. The coefficients

must be chosen such that no poles arise in the range of
the argument If this happens, the user interface gives an
error message. A rigorous treatment of the poles would lead to
a constrained and nonconvex optimization problem that most
likely cannot be solved automatically.

In a spline approximation (see [10]), a cubic polynomial is
created at the same time for every subinterval of the knots

Note that the knots are not
necessarily the same as the data points. The form of the cubic
spline for every interval is

(21)

where The splines are fitted to the data by
least squares fitting and by requiring that the approximation
and its first and second derivative are continuous. The user can
add new knots and decide the tradeoff between the accuracy
and the smoothness of the spline approximation.

The maximum thrust force is approximated by a 2-D poly-
nomial or a B-spline. The 2-D polynomial approximation is

(22)

The coefficients are determined by least squares fitting. In
the interactive process, the user can test different degreesand

A disadvantage of a polynomial approximation is the fluctu-
ation that appears with high-order polynomials in particular. It
can be avoided using piecewisely-defined 2-D polynomials,
e.g., a B-spline approximation [10]. This approximation is
formed using the knots

and base function given by

(23)

where is a knot and

(24)

The function is defined as

when
when
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Fig. 2 Visualization of the approximations. A tradeoff can be made between the accuracy and the smoothness of the approximation.

The 2-D continuous and smooth B-spline approximation is
formed by the sum of the base functions

(25)

The coefficients are determined by fitting the function (25)
to data points in the least-squares sense. If the user forms the
approximation interactively, he or she can make the tradeoff
between accuracy and smoothness of the approximation by
adding or removing knots.

The continuous approximations for the drag coefficients and
the thrust force are formed and displayed together with the
wing area and the mass of the aircraft by the model server. A
typical aircraft model is presented in Fig. 3.

If necessary, a similar approach can be adopted for the load-
factor upper and lower bounds and
At this stage, however, bounds are assumed to be constant.

VI. EXAMPLE RUNS WITH VIATO

The software is demonstrated by solving two example
aircraft trajectory optimization tasks. The example problems
are a minimum time climb, where the total time needed in
achieving a certain altitude and velocity is minimized, and

a 3-D minimum time flight to a fixed target. The software
is operated in a PC equipped with a 200 MHz PentiumPro
processor and Windows NT operating system.

The user first chooses the aircraft model from the model
library. In the examples, we use a generic modern fighter
aircraft. After the aircraft model has been selected, the user
can choose the problem type from among four possible opti-
mization tasks mentioned earlier.

A. Minimum Time Climb on a Vertical Plane

After the problem type has been chosen, the initial and the
terminal conditions are specified (see Fig. 4). The user can also
choose the method of discretization (either direct collocation or
differential inclusion) and the number of discretization points.
By default, the server uses the collocation method and ten
discretization points.

In the example, the initial and the terminal conditions of
the aircraft are

m rad m/s

kg m

m/s
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Fig. 3. Typical aircraft model.

Fig. 4. Specification of the initial and the terminal conditions.

The initial conditions correspond to a flight situation just after

a takeoff.

Once the user interface has received the required informa-

tion, it calls the optimization server. The server solves the
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Fig. 5. Visualization of 2-D trajectories in VIATO.

Fig. 6. Optimal solution shown with the SEP-plot.

problem and returns the optimal solution to the user interface.
Optimal solutions are presented graphically, and results can
be saved in a file. Thus, it is possible to read the solutions in
other applications as well.

Solutions obtained with a 2-D point-mass model are shown
in 2-D plots (see Fig. 5). The optimal state and control
variables can be plotted as a function of some other state or
control variable or the total flight time. The optimal trajectories

can further be shown together with constant energy contours
and contours of the time derivative of the aircraft’s total
energy, also called specific excess power (SEP) in the Mach
number-altitude plane (see Fig. 6). In addition to the plots,
trajectories to a moving target can be animated.

The example minimum time climb problem is solved with
10, 20, 30, and 40 discretization points. The computation
times are 1, 4, 15, and 40 s, respectively. The optimal flight
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Fig. 7. Visualization of the time optimal trajectory to the fixed target in 3-D space.

time is approximately 97 s. The optimal trajectory with 30
discretization points is shown in Fig. 5.

B. Three-Dimensional Interception

In the second example, a 3-D interception problem is solved.
The objective of the interception is to fly in minimum time
from the initial state

m m m

m/s rad rad

to the terminal point

m m m

rad rad

The terminal velocity of the aircraft is free. The initial
conditions correspond to a subsonic cruise situation.

In addition to the 2-D plots, the optimal trajectory can
now be plotted in a 3-D picture where the bank angle of the
aircraft is also illustrated (see Fig. 7). The user can change the
perspective, the size, and the view angle of the 3-D picture. It
is also possible to draw the projections of the optimal trajectory
on the and -planes.

The example is solved using 10, 20, 30, and 40 discretization
points and the direct collocation method. The computation
times are 3, 15, 50, and 120 s, respectively. The 3-D time
optimal trajectory with 20 discretization points is shown in
Fig. 7. The dimension of the problem is larger, and there
are more constraints than in the minimum time-climb task.
For these reasons, the computation times increase but are still
rather reasonable. The flight takes 63 s.

VII. SENSITIVITY ANALYSIS

Solutions of optimal control problems depend upon model
parameters. Their impact can be studied using basic sensitivity
analysis. In VIATO, the effect of the maximum thrust force or
the drag coefficients, as well as the initial or terminal states,
can be studied. As an example, we consider the minimum
time-climb of the previous section and study its sensitivity
with respect to the initial mass

We write the discretized problem as

subject to

(26)

where the initial condition for the mass of the aircraft has
been written separately.

Let us assume that the optimal solution of the above problem
is Denote by the equality and the binding inequality
constraints at and let be the corresponding Lagrange
multiplier. Further, let correspond to the constraint (26),
and assume that the solution satisfies the usually assumed
conditions for basic sensitivity theorems (e.g., [14, Th. 3.2.2]).

The Lagrange multipliers represent the first-order sensitivity
or the rate of change of the optimal objective function as
the parameter that is associated to the particular constraint
changes. The derivative of the optimal objective function at

with respect to the parameter is

(27)
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Fig. 8. Family of minimum time climb trajectories obtained with 20 discretization points. The initial mass of the aircraft is changed in 500 kg intervals
from 9000 to 10 500 kg.

so that the first-order approximation for the change of the
optimal flight time is given by

(28)

In the first example run, the value of is approximately

Thus, a change of 100 kg in the initial mass changes the total
flight time approximately 1.3 s.

The sensitivity of the optimal solution
with respect to can be studied by using the

relation

... (29)

(for the general formula, see [14], Ch. 4) where is the
Jacobian of the constraint and is the
Hessian of the Lagrangian defined by

(30)

However, for the presented aircraft trajectory optimization
problems, the use of the sensitivity results proved unreliable.
The accuracy of the solution depends on the feasibility and
optimality tolerances that are used in the optimization algo-
rithm. In practice, the tolerances cannot be arbitrarily tight,
because the approximate solution should converge in moderate
time. The approximate nature of the solution and the La-
grange multipliers cause numerical errors in the Jacobian and
especially in the Hessian, which makes (29) ill-conditioned.
Another problem is that the set of binding constraints must be
unchanged as the sensitivity parameter changes.

In VIATO, the sensitivity analysis also can be carried out
by solving the problem with a new value of the parameter
after the problem has been solved once. The user chooses the
varying parameter and its new value, and the problem is solved
such that the nominal solution is used as the initial guess. In
this way, the perturbed problem can be solved quickly. The
solutions of the perturbed problems are visualized together
with the nominal solutions.

As an example, the first problem of Section VI is now
solved such that the initial mass is changed in 500 kg intervals
from 9000 to 10 500 kg. The number of the discretization
points is 20. The optimal flight times are 87, 91, 96, and 100
s, respectively. The family of the optimal solutions is shown
in Fig. 8. The computation times of the perturbed problems
varied between 3 and 5 s. The results are in agreement with
(28).

VIII. C ONCLUSION

We have introduced an approach for the automated solution
of optimal flight trajectories. The structure of the aircraft
models and the objectives of the problems are specified in ad-
vance, and different aircraft types are characterized by sets of
parameters which are stored in a model library. Restricting to a
class of problems facilitates the efficient automatization of the
solution process. The approach is implemented in the VIATO
software which consists of an optimization server, a model
server, and an intuitive, menu-driven, graphical user interface.
As far as the authors know, VIATO is the only software that
can be run automatically by a nonexpert user. Preliminary tests
have shown that after a short introduction, aircraft engineers
without any specific background in optimization are able to use
the software independently. Due to the efficient checking of
the initial and terminal states, numerical problems are unlikely
to occur.

The implementation efficiently hides the mathematics and
practical problems related to the formulation and solution



420 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 3, AUGUST 1999

of optimal control problems. In addition, much of the la-
borious work concerning model management has been au-
tomatized. The use of discretization and nonlinear program-
ming in the optimization server enlarges the convergence
domain and ensures the convergence from the automatically
generated initial guesses. The treatment of the necessary
conditions, as well as the estimation of the switching structure,
is avoided.

Due to discretization, the solutions are approximate. The
accuracy can be improved either by increasing the number
of discretization points or by reallocating the current points
adaptively. Computational experience with VIATO has shown
that the present computational power seems to favor the former
alternative even in interactive use.

Aside from flight path optimization, a similar approach also
could be tailored to other application areas where repeated
optimal trajectories are needed, and global solutions cannot be
obtained. Such an area might be, for example, industrial robot
manipulator trajectory planning.
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