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Abstract

This paper discusses a combination of two techniques for
improving the recognition accuracy of on-line handwritten
character recognition: committee classification and adap-
tation to the user. A novel adaptive committee structure,
namely the Class-Confidence Critic Combination (CCCC)
scheme, is presented and evaluated. It is shown to be able
to improve significantly on its member classifiers. Also the
effect of having either more or less diverse sets of member
classifiers is considered.

1 Introduction

In on-line handwriting recognition the classifier or clas-
sifiers must be capable of processing natural handwriting
at high accuracies for the application to be comfortable for
the user. Including the vast amount of intrinsic variation in
handwriting in the initial character models is often impossi-
ble, or at least very impractical. Thus adaptation is a feasi-
ble or even an unavoidable way of improving performance
on any user-dependent handwriting recognition system.

Combining several different classifiers in a committee
form is another way to reach for the best attainable recog-
nition performance. Combining the results of several clas-
sifiers can improve performance because in the outputs of
the individual classifiers the errors are not necessarily over-
lapping. Committee methods generally require more than
one member classifier to recognize the input. In on-line
handwritten character recognition, this is not computation-
ally too complex for even the smallest platforms due to the
continuous increase in available computational power. The

basic operation of a committee classifier is to take the re-
sults of a set of member classifiers and attempt to com-
bine them in a way that improves performance. The two
most important features of the member classifiers that af-
fect the committee’s performance are the individual error
rates of the member classifiers and the correlatedness of the
errors. The more different the mistakes made by the classi-
fiers, the more beneficial combining them can be. Numer-
ous committee structures have recently gained attention, for
example boosting [1] and critic-driven combining [4]. The
Behavior-Knowledge Space (BKS) method [3] is based on a
K-dimensional discrete knowledge space that is used to de-
termine the class labels based on previously stored decision
information.

Though the adaptation is usually performed by adapt-
ing a single classifier to the training data, it is also possible
to construct a committee that is adaptive as a whole. The
members of an adaptive committee can be adaptive or non-
adaptive themselves. One adaptive classifier combination
strategy is to combine the member classifiers linearly using
weighting coefficients dynamically acquired from a combi-
nation coefficient predictor [8]. We present here an adaptive
committee classification scheme based on critics evaluating
the trustworthiness of the members. The technique is named
Class-Confidence Critic Combining (CCCC).

2 Class-Confidence Critic Combining

Generally, a critic-based approach is one in which a sep-
arate expert makes a decision on whether the classifier it
is examining is correct or not. Critic-driven approaches
to classifier combining have been investigated previously,
e.g. in a situation where the critic makes its decision based
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Figure 1. Structure of the CCCC committee

on the same input data as the classifier [4]. In our Class-
Confidence Critic Combining (CCCC) approach the main
idea is to try to produce as good as possible an estimate on
the classifier’s correctness based on its prior behavior for
the same character class.

In CCCC the correctness evaluation results in a confi-
dence value which is based on the earlier performance of
the classifier for the same character class. There are two dis-
tance distributions for each class stored in each critic. One
corresponds to correct classification results and the other
one to incorrect results. This is illustrated in Figure 1. Each
time a new character x is processed, it is classified by all
member classifiers and the confidences of the classification
are calculated in each critic. Two opposing confidences are
estimated in each critic, one for the correctness and the other
for the incorrectness of the classification. The confidences
in the label ck(x) from classifier k are based on the distri-
bution of a distance-indicating value dk(x). For calculating
the dk(x) value we need to know the distances from the in-
put x to the nearest prototypes, dk

1(x) and dk
2(x), calculated

for the nearest and second-nearest class, respectively. In the
case that the classifier is not based on distances, we may
use another analogous measure that decreases as similarity
increases. The value dk(x) can be obtained by taking the
ratio between the distance to the first result dk

1(x) and the
sum of the first and second result distances,

dk(x) =
dk
1(x)

dk
1(x) + dk

2(x)
∈ [0,

1

2
]. (1)

Or, we may use directly the distance to the nearest prototype
calculated by the classifier,

dk(x) = dk
1(x) ∈ [0,∞). (2)

The committee then uses one of the decision mechanisms
specified in Section 2.3 to produce the final output from the
input label information and critic confidence values qk(x)
calculated from the confidences for dk(x).

The adaptation of the critics, in practice the modifica-
tion of the distributions, is performed assuming that it is
known whether the recognition result was correct or incor-
rect. The dk(x) values received from the member classifiers
are incorporated into the corresponding critic’s appropriate
distribution, depending on the suggested class and the cor-
rectness of the result. In practice this is done by appending
the new dk(x) value to the list of values for that distribution
and recalculating the parameters needed for presenting the
distribution.

2.1 Distribution types

In order to obtain the confidences for the decisions based
on previous results, the received dk(x) values must be
somehow modeled. The approach of gathering previous
values into distributions from which the value for the con-
fidence can be obtained has been chosen for this task. The
notation used is that each distribution i, where the shorthand
distribution index i runs over both correct and incorrect dis-
tributions for each class c in each member classifier k, con-
tains N i previously collected values zi

j, j = 1, . . . , N i. The
notation for the confidence obtained from the distribution i
stands as pi(dk(x)). For shortening the notation further, we
shall use dk(x) = z.

Gaussian normal distribution: The Gaussian normal
distribution is used by calculating the mean and variance
from the already obtained samples and then calculating the
values of a Gaussian normal distribution,

pi
gaussian(z) =

1√
2πσi

e
−

(z−μi)
2

2σ2
i , (3)

where μi is the mean and σ2
i the variance for the distribution

i. Initial values are used for the mean when no samples exist
and for the variance when less than two samples have been
received for the particular distribution.

Non-parametric distribution: The non-parametric
model is based on calculating the number of points in the
distribution that are further from the mean of the distribu-
tion μi,k than the value for the input z, i.e. nf(z, i) =
∑Ni

j=1 v(z, i, j), where v(z, i, j) = 1 if |z −μi| < |zi
j −μi|

and zero otherwise. The confidence is then based on the ra-
tio between nf (z, i) and the total number of points in the



distribution N i so that

pi
nonparam(z) =

nf (z, i)

N i
. (4)

Nearest neighbor approach: The nearest neighbor
(NN) approach is not really a distribution, but the nearest
neighbor rule is used in the sense of calculating the distance
di

min(z) = minNi

j=1 |z − zi
j | from the input value z to the

nearest value already in the distribution i.This is then used
with the largest attainable distance di

max to create a measure
of confidence,

pi
NN(z) = 1 − di

min(z)

di
max

. (5)

If equation (1) is used, di
max = 0.5. When equation (2) is

used, di
max is taken to be the largest value observed.

Triangular kernel distribution estimate: This distri-
bution estimate uses a triangular kernel function, defined by
the peak bandwidth b, which is given as a parameter. The
estimate can be calculated by applying a kernel over all data
points zi

j in the distribution i and normalizing by the num-
ber of points N i. Because b is independent of the distribu-
tion and critic, there is no need to take it into account in the
normalization;

pi
trikernel(z) =

1

N i

Ni∑

j=1

max {0,
1

b
(b − |z − zi

j |)}. (6)

Gaussian kernel distribution estimate: The distribu-
tion is estimated through the use of a Gaussian function as
the kernel. The kernel bandwidth b is used as the variance
for the Gaussian. The evaluation of the distributions’ values
at specific points is performed as for the triangular kernel,

pi
gausskernel(z) =

1

N i

Ni∑

j=1

e−
(z−zi

j
)2

2b . (7)

2.2 Combining confidence values

The overall confidence qk(x) given by critic k to the
classification result ck(x) of classifier k is obtained from the
correct and incorrect classification result distribution confi-
dences pcorrect(dk(x)) and pincorrect(dk(x)), respectively, ei-
ther by subtracting them from one another, where

qk(x) = pcorrect(dk(x)) − pincorrect(dk(x)), (8)

or by using just the confidence from the correct distribution
as the overall confidence,

qk(x) = pcorrect(dk(x)). (9)

It should be noted that (8) may produce also negative confi-
dences indicating that the result from that member classifier
is expected to be incorrect.

2.3 Decision mechanisms

As the committee now has label information from the
member classifiers and the corresponding confidence val-
ues from the critics to work with, a scheme is needed for
combining them into a final result. The decision schemes
take the labels ck(x) for the input samples x from classi-
fiers k and the corresponding critics’ confidences qk(x) to
form the decision.

Maximum confidence selection: The decision is made
by selecting the result whose critic has the highest confi-
dence,

c(x) = cj(x), j = arg
K

max
k=1

qk(x). (10)

Confidence-weighted majority voting: Weighted ma-
jority voting is performed with the confidences as the
weights. With the use of the confidences, the majority vot-
ing scheme is modified to assigning

c(x) = arg
C

max
c=1

K∑

k=1

qk(x)Δck, (11)

where C is the total number of classes and K the number of
recognizers. Δck = 1 when the result from the classifier k
is the class c and zero otherwise.

Modified Current-Best-Learning decision: The
Current-Best-Learning (CBL) algorithm [5] is originally a
framework for learning general logical descriptions. This
is accomplished through maintaining a single hypothesis
and adjusting it as new examples arrive. Operations known
as generalization and specialization are used to adjust
the current hypothesis so that the resulting hypothesis is
consistent with all the examples.

The algorithm used here has grown quite far from that
initial idea, but as the resemblance is still evident, it is
here called the Modified Current-Best-Learning (MCBL)
approach. If one interprets CBL as a method of combining
classifiers, the system can be viewed as a two-dimensional
grid, with each column representing a member classifier and
each row corresponding to a particular class. The values
stored in the grid are estimates for the confidence of a mem-
ber classifier’s decision if it classifies an input in that partic-
ular class. Specialization and generalization then give rise
to changing the confidence values.

When forming the class-wise MCBL confidence val-
ues, one uses the confidences obtained from the critics,
qk(x). By combining them into class-wise confidence val-
ues fk(ck(x)), where k is the index of the classifier and
ck(x) the class suggested by that classifier for the input x, a
table consisting of each classifier’s classification result and
its confidence can be formed. To modify the hypothesis,
the values fk(ck(x)) are adjusted when the committee as a



whole is incorrect. When any individual classifier k of the
committee members is correct, the qk(x) value is added to
the confidence of the class for that classifier. On the other
hand, when a classifier produces an incorrect result, its con-
fidence for that class is multiplied with the value qk(x). The
modifications can thus be formulated as

∀k ∈ {1, . . . , K} :

fk(ck(x)) :=

{
fk(ck(x)) + qk(x), if ck(x) correct

fk(ck(x)) · qk(x) , otherwise.
(12)

When the committee produces a correct result, the cur-
rent hypothesis has been effective and no changes are made.
Due to the on-line nature of the adaptation, no backtracking
is performed and each sample is processed only once. The
confidence values can be initialized as the inverse of the or-
dering of the classifiers according to their decreasing recog-
nition performance, ie. fk(ωj) = 1

k
for all classifiers k and

class labels ωj .
Prior to the final decision, the obtained confidences were

still modified by joining the critic’s current confidence value
into the obtained MCBL confidence value by using the
transformation of equation (12). As the correctness is not
known at this point, the selection is made based on whether
the critic believes the member to be correct (qk(x) > 0)
or not. This last step should be beneficial when the critics
directly produce sufficiently accurate confidence estimates.

This modification scheme was used as it was the one
found to produce the best results from a number of schemes
experimented with. For the final decision from the MCBL
confidence values, both the original scheme selecting the
result based on the maximum value as in equation (10) and
a scheme using the weighted majority voting approach of
equation (11) were experimented with.

3 Reference committee classifiers

To evaluate the results of the CCCC committee, some
runs with reference committee classifiers have also been
carried out. They include the standard plurality voting, ad-
justing plurality voting, and adjusting best approaches.

Plurality voting committee: The first reference com-
mittee simply uses the plurality voting rule to decide the
final output. In the case of a tie the approach of iteratively
dropping the classifier with the lowest correctness ranking
and revoting was used.

Adjusting plurality voting committee: A simple ap-
proach to adaptive committee decisions is to use a weighted
variation of the original plurality voting rule. Adapta-
tion was implemented by introducing weights based on an
evaluation of correctness for each voting classifier, where

wk =
1+Nk

c

1+
P

K
j=1 N

j
c

is the weight for the output and Nk
c is

the current count of correct recognitions for the classifier
k, and K is the total number of classifiers. The addition of
one in both the nominator and denominator is made to avoid
both zero weights and divisions by zero. The final plural-
ity voting decision is obtained as in equation (11), with the
weights wk replacing the confidences qk(x).

Adjusting best committee: In the adjusting best com-
mittee the main idea is to select the best classifier for
each individual writer by evaluating each classifier’s perfor-
mance during operation and using the result from the classi-
fier that has performed the best up to that time. The perfor-
mance evaluation is conducted by simply keeping track of
correct results obtained from each classifier. At any given
time the committee’s decision is thus the result from the
classifier with the highest correct answer count at that point,
c(x) = cj(x), where j = arg maxK

k=1 Nk
c , with Nk

c being
the current count of correct recognitions for classifier k and
ck(x) the class suggested by that classifier. In the case of a
draw, the result from the higher-ranked classifier is used.

4 Member classifiers

The adaptive committee experiments were performed us-
ing a subset of six classifiers from the total of eight differ-
ent classifiers created. Four of the member classifiers were
based on stroke-by-stroke distances between the given char-
acter and prototypes. Dynamic Time Warping (DTW) was
used to compute one of two distances, point-to-point (PP)
or point-to-line (PL) [7]. The PP distance uses the squared
Euclidean distance between two data points as the cost func-
tion. In the PL distance the points of a stroke are matched to
lines interpolated between the successive points of the op-
posite stroke. All character samples were scaled so that the
length of the longer side of their bounding box was normal-
ized and the aspect ratio kept unchanged. Also the centers
of the character, defined either as the input sample’s mass
center (MC) or as the center of the sample’s bounding box
(BBC), were moved to the origin. These classifiers are the
first four in Table 1.

Two Support Vector Machine (SVM) -based classifiers
were created so that the on-line characters were first mapped
into bitmaps. The bounding box was first identified for
every character and scaled into a normalized box. The
character bitmap image was constructed by thickening the
lines and creating high resolution 400 × 400 binary im-
ages. After applying a down-sampling procedure, the re-
sulting gray-level character bitmaps of size 20 × 20 were
created. The bitmaps were then stacked column-wise into
400-dimensional vectors and their projections onto 64 prin-
cipal components were used as features. The SVM classifier
was applied to classify the obtained features by construct-
ing binary classifiers, each one separating one class from
the rest. The decomposition principle implemented in [6]



Table 1. Member classifier rates

Classifier Distance measure Errors
1 DTW-PP-MC 10.9%
2 DTW-PL-MC 11.5%
3 DTW-PP-BBC 12.2%
4 DTW-PL-BBC 13.6%
5 SVM-Gaussian 21.8%
6 SVM-Polynomial 22.6%
7 DTW-NPP-MC 12.3%
8 DTW-NPP-BBC 13.4%

was used to train the SVMs in the experiments [2]. The
SVM classifiers can be found on lines 5 and 6 in Table 1.

We did experiments to evaluate the benefit of having di-
verse classifiers, i.e., using the two SVM-based classifiers
in addition to the DTW-based classifiers. In the experi-
ments the two SVM-based classifiers were replaced with
two additional DTW-classifiers, so the committee consisted
of six different DTW-classifiers. These last two also use
the same preprocessing as explained above, but a distance
measure called the normalized point-to-point (NPP) dis-
tance [7]. This measure is very similar to the point-to-point
distance but with the addition of normalizing the calculated
cost by the number of matchings performed. These classi-
fiers are on lines 7 and 8 in Table 1.

5 Experiments

The data used in the experiments were isolated on-line
characters collected on a Silicon Graphics workstation us-
ing a Wacom Artpad II tablet. The data was stored in
UNIPEN format. The preprocessing is covered in detail
in [7]. The databases are summarized in Table 2. The
databases consisted of characters by entirely different writ-
ers. Only lower case letters and digits were used in the ex-
periments. Database 1 consists of characters written with-
out any visual feedback. The a priori probabilities of the
classes were somewhat similar to that of the Finnish lan-
guage. Databases 2 and 3 were collected with a program
that showed the pen trace on the screen and recognized the
characters on-line. The distribution of the character classes
was approximately even.

Database 1 was used for forming the initial user-
independent member classifiers. The prototype set for the
DTW-based classifiers consisted of 7 prototypes per class,
and the SVM extracted a total of approximately 6000 sup-
port vectors. Database 2 was used for evaluating some
general numeric parameters for the CCCC committee and
determining the performance rankings of the classifiers.
Database 3 was used as a test set.

Table 2. Summary of the databases used

Database Writers Characters (a-z,0-9)
DB1 22 ∼ 10 400 8461
DB2 8 ∼ 8 100 4643
DB3 8 ∼ 8 100 4626

Table 3. Effects of CCCC components

Average Best
Distribution/Decision error% error%
Triangular kernel distribution 11.2 8.4
Gaussian kernel distribution 14.7 9.3
Non-parametric distribution 18.1 8.3
Nearest neighbor ”distribution” 18.4 8.0
Gaussian distribution 19.1 8.4
MCBL decision 15.2 8.5
MCBL-vote decision 15.3 8.0
Maximum confidence decision 16.6 9.7
Weighted voting decision 17.7 9.3

6 Results

The results for the CCCC configurations have been ob-
tained by using the first six member classifiers from Table 1.
The committees were implemented and run in batch mode:
on-line operation was simulated by taking data in its origi-
nal order and disallowing reiteration. The error rates have
been calculated over all characters for all writers. All adap-
tive committee classifiers were reset in between writers for
writer-dependent operation.

The most effective combination for the CCCC scheme
seems to be to use the nearest-neighbor confidence model
along with the MCBL-voting-decision mechanism, as can
be seen from the best results column in Table 3. This
combination provides an error rate of 8.0%.

Also several less fundamental options were experi-
mented with. They included the possibility of using the
second-ranking result if the first-ranked result from the clas-
sifier had low confidence, learning only on the committees
errors, repeatedly inserting samples into the distributions
to enhance learning effects, adjusting the confidences with
run-time recognition rates and not accepting results with
negative confidences. But due to space concerns the re-
porting has been omitted here, as their significance to the
method was much lower.

The effects of the individual components were evaluated
by averaging over all the runs with a particular option in
use. The best error percentages correspond to the best run
using the component. The averages presented in the tables



have been calculated over all combinations of the options,
resulting in notably low average rates due to some absurd
combinations that result in very high error rates. Table 3
shows that in general the kernel-function-based distribu-
tion estimates do perform better, with the triangular kernel
function performing on the average the best. The differ-
ence between using the non-parametric distribution and the
nearest-neighbor approach is quite small. The use of one
Gaussian seems to be insufficient. But looking at the lowest
error rates, the picture is quite different with the nearest-
neighbor approach performing the best, followed by the
non-parametric, triangular kernel and simple Gaussian dis-
tributions, and the Gaussian kernel being clearly the worst.

Table 3 also shows that the MCBL decision mechanism
applied to the confidences obtained from the critics pro-
duces clearly the best results. The difference between us-
ing the single maximum or voting variation is very small,
but the MCBL variation of selecting the single largest con-
fidence is on the average slightly better than its counterpart
based on weighted voting and the MCBL-vote approach
producing the best individual result. The weighted voting
approach seems to be inferior to just choosing the result
with the best confidence. But the best single result from the
two decision mechanisms not based on MCBL is received
through the voting-based approach.

The results of the committees are compared in the middle
column of Table 4. Also the result from the best individual
member classifier and the average of members are shown.
The CCCC committee outperforms all the other methods
used. The voting approaches perform better than the adjust-
ing best approach, the only one unable to outperform all its
members. The adjusting plurality voting is able to perform
slightly better than the basic voting scheme.

An additional experiment was run to evaluate the ben-
efits of having the SVM-based classifiers, which produce
worse results but also different errors than those based on
DTW, used in the committees. To evaluate their benefit,
experiments were run also using only DTW-based commit-
tee classifiers. For these comparison experiments the two
SVM-based member classifiers 5 and 6 in Table 1 were re-
placed with the DTW-based member classifiers 7 and 8. The
results are in the last column of Table 4. As can be seen,
especially the more advanced CCCC combination method
benefits notably from having the more diverse set of mem-
ber classifiers, even though the average error rate over the
member classifiers is clearly higher. The plurality voting
approaches also benefit from the diversity, as can be seen in
the slight increases in error percentages when moving to all-
DTW member classifiers. On the other hand the adjusting
best scheme is more dependent on having well-performing
member classifiers than on anything else. As such it bene-
fits from having more similar member classifiers with lower
individual error rates.

Table 4. Comparison of adaptive committees

Error % Error %
Combination method DTW& SVM all DTW
CCCC 8.0 9.3
Adjusting Plurality Voting 10.1 10.3
Plurality Voting 10.2 10.4
Adjusting Best 11.4 11.3
Best member classifier 10.9 10.9
Member classifier average 15.4 12.3

7 Conclusions

The experiments regarding adaptive CCCC committee
have shown notable improvements in performance over any
of the individual members. The CCCC approach using a
nearest-neighbor distribution and the MCBL-vote decision
rule was the most effective combination of the ones tested.
It is also clear from the results that combining more diverse
member classifiers is beneficial, even if some of the mem-
bers by themselves perform worse. The most important fac-
tor is that the member classifiers should not make the same
mistakes, as the situations where the member classifiers all
suggest a single incorrect result is the most difficult one to
correct.
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